FINITE REPRESENTATION OF AN INFINITE BULK SYSTEM - SOLVENT BOUNDARY POTENTIAL FOR COMPUTER-SIMULATIONS

被引:883
作者
BEGLOV, D
ROUX, B
机构
[1] Department of Chemistry, University of Montreal, H3C 3J7, C.P. 6128, succ. A
关键词
D O I
10.1063/1.466711
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An approach is developed to obtain statistical properties similar to those of an infinite bulk system from computer simulations of a finite cluster. A rigorous theoretical formulation is given for the solvent boundary potential which takes the influence of the surrounding bulk into account. The solvent boundary potential is the configuration-dependent solvation free energy of an effective cluster composed of an arbitrary solute and a finite number of explicit solvent molecules embedded inside a hard sphere of variable radius; the hard sphere does not act directly on the solute or the explicit solvent molecules, and its radius varies according to the instantaneous configurations. The formulation follows from an exact separation of the multidimensional configurational Boltzmann integral in terms of the solvent molecules nearest to the solute and the remaining bulk solvent molecules. An approximation to the solvent boundary potential is constructed for simulations of bulk water at constant pressure, including the influence of van der Waals and electrostatic interactions. The approximation is illustrated with calculations of the solvation free energy of a water molecule and of sodium and potassium ions. The influence of bulk solvent on the conformational equilibrium of molecular solutes is illustrated by performing umbrella sampling calculations of n-butane and alanine dipeptide in water. The boundary potential is tested to examine the dependence of the results on the number of water molecules included explicitly in the simulations. It is observed that bulk-like results are obtained, even when only the waters in the first hydration shell are included explicitly.
引用
收藏
页码:9050 / 9063
页数:14
相关论文
共 52 条
[1]  
Allen M.P, 1990, COMPUTER SIMULATION
[2]   COMPUTER-SIMULATION STUDY OF THE MEAN FORCES BETWEEN FERROUS AND FERRIC IONS IN WATER [J].
BADER, JS ;
CHANDLER, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (15) :6423-6427
[3]   MOLECULAR-DYNAMICS SIMULATIONS OF TIPS2 WATER RESTRICTED BY A SPHERICAL HYDROPHOBIC BOUNDARY [J].
BELCH, AC ;
BERKOWITZ, M .
CHEMICAL PHYSICS LETTERS, 1985, 113 (03) :278-282
[4]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE
[5]   MOLECULAR-DYNAMICS WITH STOCHASTIC BOUNDARY-CONDITIONS [J].
BERKOWITZ, M ;
MCCAMMON, JA .
CHEMICAL PHYSICS LETTERS, 1982, 90 (03) :215-217
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   DEFORMABLE STOCHASTIC BOUNDARIES IN MOLECULAR-DYNAMICS [J].
BROOKS, CL ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12) :6312-6325
[8]  
BROOKS CL, 1988, ADV CHEM PHYSICS, V71
[9]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500
[10]  
Burgess J., 1978, METAL IONS SOLUTION