Exact variance of indirect effects in recursive linear models

被引:8
作者
Allison, PD
机构
来源
SOCIOLOGICAL METHODOLOGY 1995, VOL 25 | 1995年 / 25卷
关键词
D O I
10.2307/271069
中图分类号
C91 [社会学];
学科分类号
030301 ; 1204 ;
摘要
Using the delta method, Sobel obtained the asymptotic variance of indirect effects in linear structural equation models. Using a reduced-form parameterization and a conditioning argument, I obtain the exact variance of indirect effects in the special case of recursive linear models with no latent variables. I then show that a consistent estimator for the exact variance is identical to Sobel's estimator.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 14 条
[1]   DECOMPOSITION OF EFFECTS IN PATH ANALYSIS [J].
ALWIN, DF ;
HAUSER, RM .
AMERICAN SOCIOLOGICAL REVIEW, 1975, 40 (01) :37-47
[2]  
BICKEL PJ, 1977, MATH STATISTICS
[3]  
BOLLEN KA, 1990, SOCIOL METHODOL, P115
[4]  
BOLLEN KA, 1987, SOCIOL METHODOL, P37
[5]  
DRHYMES PJ, 1984, MATH ECONOMETRICS
[6]  
Duncan B, 1972, SOCIOECONOMIC BACKGR
[7]   EFFECT ANALYSIS IN STRUCTURAL-EQUATION MODELS .2. CALCULATION OF SPECIFIC INDIRECT EFFECTS [J].
FOX, J .
SOCIOLOGICAL METHODS & RESEARCH, 1985, 14 (01) :81-95
[9]  
Goldberger Arthur S., 1991, COURSE ECONOMETRICS
[10]  
JORESKOG KG, 1993, NEW FEATURES LISREL, V8