TOWARDS MINIMAL ASSUMPTIONS FOR THE INFIMAL CONVOLUTION REGULARIZATION

被引:28
作者
BOUGEARD, M [1 ]
PENOT, JP [1 ]
POMMELLET, A [1 ]
机构
[1] FAC SCI PAU,CNRS,UA 1204,F-64000 PAU,FRANCE
关键词
D O I
10.1016/0021-9045(91)90062-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We encompass the Moreau-Yosida regularization process by infimal convolution into a general framework. This sheds light on the assumptions required for obtaining the usual properties. In particular the class of lower-T2 mappings is shown to be a suitable class for performing the usual proximal regularization in open subsets of Hilbert spaces. The role of growth conditions is pointed out. © 1991.
引用
收藏
页码:245 / 270
页数:26
相关论文
共 28 条
[1]  
ATTOUCH H, 1983, T AM MATH SOC, V280, P1
[2]  
ATTOUCH H, 1984, APPLICABLE MATH SERI
[3]   CONVEXIFICATION PROCEDURES AND DECOMPOSITION METHODS FOR NON-CONVEX OPTIMIZATION PROBLEMS [J].
BERTSEKAS, DP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (02) :169-197
[4]   MORSE-THEORY FOR SOME LOWER-C2 FUNCTIONS IN FINITE DIMENSION [J].
BOUGEARD, ML .
MATHEMATICAL PROGRAMMING, 1988, 41 (02) :141-159
[5]  
BOUGEARD ML, 1978, THESIS U PARIS DAUPH
[6]  
CASTAING C, 1976, TRAVAUX SEMINAIRE AN
[7]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[8]  
De Giorgi E., 1979, P INT M REC METH NON, P131
[9]  
DOLECKI S, 1985, INF CONVOLUTIONS GEN
[10]   ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE [J].
EKELAND, I ;
LASRY, JM .
ANNALS OF MATHEMATICS, 1980, 112 (02) :283-319