THE STOCHASTIC GEOMETRY OF INVASION PERCOLATION

被引:70
作者
CHAYES, JT
CHAYES, L
NEWMAN, CM
机构
[1] HARVARD UNIV,DEPT PHYS,CAMBRIDGE,MA 02138
[2] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
关键词
D O I
10.1007/BF01216096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:383 / 407
页数:25
相关论文
共 28 条
[1]  
AIZENMAN M, 1983, COMMUN MATH PHYS, V92, P19, DOI 10.1007/BF01206313
[2]   TREE GRAPH INEQUALITIES AND CRITICAL-BEHAVIOR IN PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :107-143
[3]   LOWER BOUNDS ON THE CLUSTER SIZE DISTRIBUTION [J].
AIZENMAN, M ;
DELYON, F ;
SOUILLARD, B .
JOURNAL OF STATISTICAL PHYSICS, 1980, 23 (03) :267-280
[4]  
Aizenman M, UNPUB
[5]  
CAMPANINO M, ANN PROBAB
[6]   CAPILLARY DISPLACEMENT AND PERCOLATION IN POROUS-MEDIA [J].
CHANDLER, R ;
KOPLIK, J ;
LERMAN, K ;
WILLEMSEN, JF .
JOURNAL OF FLUID MECHANICS, 1982, 119 (JUN) :249-267
[7]  
CHAYES JT, UNPUB STOCHASTIC GEO
[8]  
GRIMMETT GR, 1981, J LOND MATH SOC, V23, P372
[9]   PERCOLATION PROCESSES - LOWER BOUNDS FOR THE CRITICAL PROBABILITY [J].
HAMMERSLEY, JM .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03) :790-795
[10]  
HAMMERSLEY JM, 1963, METHODS COMPUTATIONA, V1