4TH-ORDER SYMPLECTIC INTEGRATION

被引:534
作者
FOREST, E [1 ]
RUTH, RD [1 ]
机构
[1] STANFORD UNIV,STANFORD LINEAR ACCELERATOR CTR,STANFORD,CA 94309
来源
PHYSICA D | 1990年 / 43卷 / 01期
关键词
D O I
10.1016/0167-2789(90)90019-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an explicit fourth-order method for the integration of Hamilton's equations. This method preserves the property that the time evolution of such a system yields a canonical transformation from the initial conditions to the final state. That is, the integration step is an explicit symplectic map. Although the result is first derived for a specific type of Hamiltonian, it is shown to be quite general. In particular, the results can be applied to any Lie group. © 1990.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 8 条
[1]   BEAM OPTICS COMPUTATION FOR PARTICLE TRANSPORT SYSTEMS BY MEANS OF AN IMPROVED NEWTON-RAPHSON METHOD [J].
BASSETTI, M ;
BUONANNI, RM ;
PLACIDI, M .
NUCLEAR INSTRUMENTS & METHODS, 1966, 45 (01) :93-&
[2]  
CANDY JM, COMMUNICATION
[3]  
CHANNELL PJ, 1988, LAUR881828 LOS AL NA
[4]  
DEVOGELAERE R, N7ONR43906
[5]   COMPUTATION OF NONLINEAR BEHAVIOR OF HAMILTONIAN-SYSTEMS USING LIE ALGEBRAIC METHODS [J].
DRAGT, AJ ;
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2734-2744
[6]  
GOLDSTEIN H, 1965, CLASSICAL MECHANICS
[7]  
HEARN AC, REDUCE VERSION
[8]   A CANONICAL INTEGRATION TECHNIQUE [J].
RUTH, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) :2669-2671