MECHANISMS OF ACTIN REARRANGEMENTS MEDIATING PLATELET ACTIVATION

被引:352
作者
HARTWIG, JH
机构
[1] HARVARD UNIV,SCH MED,DEPT MED,BOSTON,MA 02115
[2] HARVARD UNIV,SCH MED,DEPT ANAT,BOSTON,MA 02115
[3] HARVARD UNIV,SCH MED,DEPT CELLULAR BIOL,BOSTON,MA 02115
关键词
D O I
10.1083/jcb.118.6.1421
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1-mu-m in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-mu-m-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-mu-m-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles. The calcium transient associated with platelet activation induces fragmentation of peripheral actin filaments by free gelsolin, and the resulting actin fragments, after dissociation of gelsolin from the filament ends, nucleate barbed-end growth of the lamellipodial network.
引用
收藏
页码:1421 / 1442
页数:22
相关论文
共 52 条
[1]   TRANSFORMATION AND MOTILITY OF HUMAN-PLATELETS - DETAILS OF THE SHAPE CHANGE AND RELEASE REACTION OBSERVED BY OPTICAL AND ELECTRON-MICROSCOPY [J].
ALLEN, RD ;
ZACHARSKI, LR ;
WIDIRSTKY, ST ;
ROSENSTEIN, R ;
ZAITLIN, LM ;
BURGESS, DR .
JOURNAL OF CELL BIOLOGY, 1979, 83 (01) :126-142
[2]   ORGANIZATION OF THE CYTOSKELETON IN RESTING, DISCOID PLATELETS - PRESERVATION OF ACTIN-FILAMENTS BY A MODIFIED FIXATION THAT PREVENTS OSMIUM DAMAGE [J].
BOYLES, J ;
FOX, JEB ;
PHILLIPS, DR ;
STENBERG, PE .
JOURNAL OF CELL BIOLOGY, 1985, 101 (04) :1463-1472
[3]   CYTOCHALASIN-D INHIBITS ACTIN POLYMERIZATION AND INDUCES DEPOLYMERIZATION OF ACTIN-FILAMENTS FORMED DURING PLATELET SHAPE CHANGE [J].
CASELLA, JF ;
FLANAGAN, MD ;
LIN, S .
NATURE, 1981, 293 (5830) :302-305
[4]  
DAVIES GE, 1985, BLOOD, V65, P52
[5]  
DAVIES TA, 1989, J BIOL CHEM, V264, P19600
[6]  
DINUBILE MJ, 1985, J BIOL CHEM, V260, P7402
[7]   FC-RECEPTOR MEDIATED PHAGOCYTOSIS OCCURS IN MACROPHAGES AT EXCEEDINGLY LOW CYTOSOLIC CA-2+ LEVELS [J].
DIVIRGILIO, F ;
MEYER, BC ;
GREENBERG, S ;
SILVERSTEIN, SC .
JOURNAL OF CELL BIOLOGY, 1988, 106 (03) :657-666
[8]  
FOX JEB, 1987, BLOOD, V69, P537
[9]  
FOX JEB, 1985, J BIOL CHEM, V260, P1060
[10]   IDENTIFICATION OF A MEMBRANE SKELETON IN PLATELETS [J].
FOX, JEB ;
BOYLES, JK ;
BERNDT, MC ;
STEFFEN, PK ;
ANDERSON, LK .
JOURNAL OF CELL BIOLOGY, 1988, 106 (05) :1525-1538