ANALYSIS OF THE SIP3 PROTEIN IDENTIFIED IN A 2-HYBRID SCREEN FOR INTERACTION WITH THE SNF1 PROTEIN-KINASE

被引:28
作者
LESAGE, P
YANG, XL
CARLSON, M
机构
[1] COLUMBIA UNIV,COLL PHYSICIANS & SURGEONS,DEPT GENET & DEV,NEW YORK,NY 10032
[2] COLUMBIA UNIV,COLL PHYSICIANS & SURGEONS,INST CANC RES,NEW YORK,NY 10032
关键词
D O I
10.1093/nar/22.4.597
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae SIP3 gene was identified in a two-hybrid screen for proteins that interact in vivo with the SNF1 protein kinase, which is necessary for release of glucose repression. We showed that the C-terminal part of SIP3, recovered through its ability to interact with SNF1, strongly activates transcription when tethered to DNA. We have cloned and sequenced the entire SIP3 gene. The predicted 142-kD SIP3 protein contains a putative leucine zipper motif located in its C terminus. The native SIP3 protein also interacts with DNA-bound SNF1 and activates transcription of a target gene. A complete deletion of the SIP3 gene did not confer phenotypes characteristic of snf1 mutants. However, in a mutant deficient for the SNF1 kinase activity due to loss of the SNF4 stimulatory function, increased dosage of SIP3 partially restored expression of the glucose-repressible SUC2 gene. Overexpression of the C terminus of SIP3 caused defects in growth and SUC2 expression which were remedied by overexpressing SNF1. Taken together, these genetic data suggest that SIP3 is functionally related to the SNF1 protein kinase pathway.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 39 条
[1]   MOLECULAR CHARACTERIZATION OF HELIX-LOOP-HELIX PEPTIDES [J].
ANTHONYCAHILL, SJ ;
BENFIELD, PA ;
FAIRMAN, R ;
WASSERMAN, ZR ;
BRENNER, SL ;
STAFFORD, WF ;
ALTENBACH, C ;
HUBBELL, WL ;
DEGRADO, WF .
SCIENCE, 1992, 255 (5047) :979-983
[2]  
BARTEL P, 1993, BIOTECHNIQUES, V14, P920
[3]   REGULATION OF THE YEAST HO GENE [J].
BREEDEN, L ;
NASMYTH, K .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1985, 50 :643-650
[4]   A EUKARYOTIC TRANSCRIPTIONAL ACTIVATOR BEARING THE DNA SPECIFICITY OF A PROKARYOTIC REPRESSOR [J].
BRENT, R ;
PTASHNE, M .
CELL, 1985, 43 (03) :729-736
[5]  
BULLOCK WO, 1987, BIOTECHNIQUES, V5, P376
[6]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[7]   MOLECULAR ANALYSIS OF THE SNF4 GENE OF SACCHAROMYCES-CEREVISIAE - EVIDENCE FOR PHYSICAL ASSOCIATION OF THE SNF4 PROTEIN WITH THE SNF1 PROTEIN-KINASE [J].
CELENZA, JL ;
ENG, FJ ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5045-5054
[8]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[9]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[10]   STRUCTURE AND EXPRESSION OF THE SNF1 GENE OF SACCHAROMYCES-CEREVISIAE [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1984, 4 (01) :54-60