SMALLEST-LAST ORDERING AND CLUSTERING AND GRAPH-COLORING ALGORITHMS

被引:338
作者
MATULA, DW [1 ]
BECK, LL [1 ]
机构
[1] SAN DIEGO STATE UNIV,SAN DIEGO,CA 92182
关键词
D O I
10.1145/2402.322385
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:417 / 427
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 1968, J COMBIN THEORY
[2]   NEW METHODS TO COLOR THE VERTICES OF A GRAPH [J].
BRELAZ, D .
COMMUNICATIONS OF THE ACM, 1979, 22 (04) :251-256
[3]   A BOUND GIVEN BY HS WILF FOR FINITE GRAPH CHROMATIC NUMBERS [J].
FINCK, HJ ;
SACHS, H .
MATHEMATISCHE NACHRICHTEN, 1969, 39 (4-6) :373-&
[4]   COMPLEXITY OF NEAR-OPTIMAL GRAPH COLORING [J].
GAREY, MR ;
JOHNSON, DS .
JOURNAL OF THE ACM, 1976, 23 (01) :43-49
[5]   APPLICATION OF GRAPH COLORING TO PRINTED-CIRCUIT TESTING [J].
GAREY, MR ;
JOHNSON, DS ;
SO, HC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1976, 23 (10) :591-599
[6]   COLORING RANDOM GRAPHS [J].
GRIMMETT, GR ;
MCDIARMID, CJH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :313-324
[7]  
Harary F., 1969, GRAPH THEORY, DOI DOI 10.21236/AD0705364
[8]  
Jardine N., 1971, MATH TAXONOMY
[9]  
Karp R.M., 1972, COMPLEXITY COMPUTER
[10]  
KARP RM, 1975, 6TH P SE C COMB GRAP, P15