Berry–Esseen bounds in the entropic central limit theorem

被引:1
作者
Sergey G. Bobkov
Gennadiy P. Chistyakov
Friedrich Götze
机构
[1] University of Minnesota,School of Mathematics
[2] Universität Bielefeld,Fakultät für Mathematik
来源
Probability Theory and Related Fields | 2014年 / 159卷
关键词
Entropy; Entropic distance; Central limit theorem; Berry–Esseen bounds; Primary 60E;
D O I
暂无
中图分类号
学科分类号
摘要
Berry–Esseen-type bounds for total variation and relative entropy distances to the normal law are established for the sums of non-i.i.d. random variables.
引用
收藏
页码:435 / 478
页数:43
相关论文
共 33 条
[1]
Artstein S.(2004)On the rate of convergence in the entropic central limit theorem Probab. Theory Relat. Fields 129 381-390
[2]
Ball K.M.(1986)Entropy and the central limit theorem Ann. Probab. 14 336-342
[3]
Barthe F.(2004)Fisher information inequalities and the central limit theorem Probab. Theory Relat. Fields 129 391-409
[4]
Naor A.(2012)Bounds for characteristic functions in terms of quantiles and entropy Electron. Commun. Probab. 17 21-28
[5]
Barron AR(1999)Exponential integrability and transportation cost related to logarithmic Sobolev inequalities J. Funct. Anal. 163 1-371
[6]
Barron AR(1991)Entropy production by block variable summation and central limit theorems Comm. Math. Phys. 140 339-1518
[7]
Johnson O(1991)Information-theoretic inequalities IEEE Trans. Inf. Theory 37 1501-318
[8]
Bobkov S.G.(1967)Information-type measures of difference of probability distributions and indirect observations Studia Sci. Math. Hung. 2 299-125
[9]
Chistyakov G.P.(1945)Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law Acta Math. 77 1-1498
[10]
Götze F.(2003)Refinements of Pinsker’s inequality IEEE Trans. Inf. Theory 49 1491-127