Least Squares Support Vector Machine Classifiers

被引:36
作者
J.A.K. Suykens
J. Vandewalle
机构
[1] Katholieke Universiteit Leuven,Department of Electrical Engineering
来源
Neural Processing Letters | 1999年 / 9卷
关键词
classification; support vector machines; linear least squares; radial basis function kernel;
D O I
暂无
中图分类号
学科分类号
摘要
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem.
引用
收藏
页码:293 / 300
页数:7
相关论文
共 10 条
[1]  
Ridella S.(1997)Circular back propagation networks for classification IEEE Transactions on Neural Networks 8 84-97
[2]  
Rovetta S.(1997)Comparing support vector machines with Gaussian kernels to radial basis function classifiers IEEE Transactions on Signal Processing 45 2758-2765
[3]  
Zunino R.(undefined)undefined undefined undefined undefined-undefined
[4]  
Schölkopf B.(undefined)undefined undefined undefined undefined-undefined
[5]  
Sung K.-K.(undefined)undefined undefined undefined undefined-undefined
[6]  
Burges C.(undefined)undefined undefined undefined undefined-undefined
[7]  
Girosi F.(undefined)undefined undefined undefined undefined-undefined
[8]  
Niyogi P.(undefined)undefined undefined undefined undefined-undefined
[9]  
Poggio T.(undefined)undefined undefined undefined undefined-undefined
[10]  
Vapnik V.(undefined)undefined undefined undefined undefined-undefined