Regulation of a cloned epithelial Na+ channel by its β- and γ-subunits

被引:36
作者
Awayda, MS
Tousson, A
Benos, DJ
机构
[1] Tulane Univ, Sch Med, Dept Med, New Orleans, LA 70112 USA
[2] Tulane Univ, Sch Med, Dept Physiol, New Orleans, LA 70112 USA
[3] Univ Alabama Birmingham, Dept Cell Biol, Birmingham, AL 35223 USA
[4] Univ Alabama Birmingham, Dept Physiol & Biophys, Birmingham, AL 35223 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 1997年 / 273卷 / 06期
关键词
oocyte expression; immunofluorescence; Liddle's syndrome; channel activation;
D O I
10.1152/ajpcell.1997.273.6.C1889
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Using the Xenopus oocyte expression system, we examined the mechanisms by which the beta- and gamma-subunits of an epithelial Na+ channel (ENaC) regulate alpha-subunit channel activity and the mechanisms by which beta-subunit truncations cause ENaC activation. Expression of alpha-ENaC alone produced small amiloride-sensitive currents (-43 +/- 10 nA, n = 7). These currents increased >30-fold with the coexpression of beta- and gamma-ENaC to -1,476 +/- 254 nA (n = 20). This increase was accompanied by a 3.1- and 2.7-fold increase of membrane fluorescence intensity in the animal and vegetal poles of the oocyte, respectively, with use of an antibody directed against the alpha-subunit of ENaC. Truncation of the last 75 amino acids of the beta-subunit COOH terminus, as found in the original pedigree of individuals with Liddle's syndrome, caused a 4.4-fold (n = 17) increase of the amiloride-sensitive currents compared with wild-type alpha beta gamma-ENaC. This was accompanied by a 35% increase of animal pole membrane fluorescence intensity. Injection of a 30-amino acid peptide with sequence identity to the COOH terminus of the human beta-ENaC significantly reduced the amiloride-sensitive currents by 40-50%. These observations suggest a tonic inhibitory role on the channel's open probability (P-o) by the COOH terminus of beta-ENaC. We conclude that the changes of current observed with coexpression of the beta- and gamma-subunits or those observed with beta-subunit truncation are likely the result of changes of channel density in combination with large changes of P-o.
引用
收藏
页码:C1889 / C1899
页数:11
相关论文
共 26 条
[1]   Aldosterone-induced increase in the abundance of Na+ channel subunits [J].
Asher, C ;
Wald, H ;
Rossier, BC ;
Garty, H .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (02) :C605-C611
[2]   Protein kinase regulation of a cloned epithelial Na+ channel [J].
Awayda, MS ;
Ismailov, II ;
Berdiev, BK ;
Fuller, CM ;
Benos, DJ .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (01) :49-65
[3]  
AWAYDA MS, 1995, AM J PHYSIOL, V268, pC145
[4]  
BUBIEN JK, 1995, AM J PHYSIOL, V270, pD208
[5]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[6]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[7]   REGULATION OF EXPRESSION OF THE LUNG AMILORIDE-SENSITIVE NA+ CHANNEL BY STEROID-HORMONES [J].
CHAMPIGNY, G ;
VOILLEY, N ;
LINGUEGLIA, E ;
FRIEND, V ;
BARBRY, P ;
LAZDUNSKI, M .
EMBO JOURNAL, 1994, 13 (09) :2177-2181
[8]   CELL-SPECIFIC EXPRESSION OF EPITHELIAL SODIUM-CHANNEL ALPHA-SUBUNITS, BETA-SUBUNITS, AND GAMMA-SUBUNITS IN ALDOSTERONE-RESPONSIVE EPITHELIA FROM THE RAT - LOCALIZATION BY IN-SITU HYBRIDIZATION AND IMMUNOCYTOCHEMISTRY [J].
DUC, C ;
FARMAN, N ;
CANESSA, CM ;
BONVALET, JP ;
ROSSIER, BC .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1907-1921
[9]   Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach [J].
Firsov, D ;
Schild, L ;
Gautschi, I ;
Merillat, AM ;
Schneeberger, E ;
Rossier, BC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15370-15375
[10]   HYPERTENSION CAUSED BY A TRUNCATED EPITHELIAL SODIUM-CHANNEL GAMMA-SUBUNIT - GENETIC-HETEROGENEITY OF LIDDLE SYNDROME [J].
HANSSON, JH ;
NELSONWILLIAMS, C ;
SUZUKI, H ;
SCHILD, L ;
SHIMKETS, R ;
LU, Y ;
CANESSA, C ;
IWASAKI, T ;
ROSSIER, B ;
LIFTON, RP .
NATURE GENETICS, 1995, 11 (01) :76-82