Stabilization of α-synuclein secondary structure upon binding to synthetic membranes

被引:1317
作者
Davidson, WS
Jonas, A
Clayton, DF
George, JM
机构
[1] Univ Illinois, Dept Cell & Struct Biol, Chem & Life Sci Lab B107, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
关键词
D O I
10.1074/jbc.273.16.9443
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
alpha-Synuclein is a highly conserved presynaptic protein of unknown function. A mutation in the protein has been causally linked to Parkinson's disease in humans, and the normal protein is an abundant component of the intraneuronal inclusions (Lewy bodies) characteristic of the disease. alpha-Synuclein is also the precursor to an intrinsic component of extracellular plaques in Alzheimer's disease. The alpha-synuclein sequence is largely composed of degenerate 11-residue repeats reminiscent of the amphipathic alpha-helical domains of the exchangeable apolipoproteins. We hypothesized that alpha-synuclein should associate with phospholipid bilayers and that this lipid association should stabilize an alpha-helical secondary structure in the protein. We report that alpha-synuclein binds to small unilamellar phospholipid vesicles containing acidic phospholipids, but not to vesicles with a net neutral charge. We further show that the protein associates preferentially with vesicles of smaller diameter (20-25 nm) as opposed to larger (similar to 125 nm) vesicles. Lipid binding is accompanied by an increase in alpha-helicity from 3% to approximately 80%. These observations are consistent with a role in vesicle function at the presynaptic terminal.
引用
收藏
页码:9443 / 9449
页数:7
相关论文
共 42 条
[1]   EVALUATION OF SECONDARY STRUCTURE OF PROTEINS FROM UV CIRCULAR-DICHROISM SPECTRA USING AN UNSUPERVISED LEARNING NEURAL-NETWORK [J].
ANDRADE, MA ;
CHACON, P ;
MERELO, JJ ;
MORAN, F .
PROTEIN ENGINEERING, 1993, 6 (04) :383-390
[2]   SIMPLE METHOD FOR PREPARATION OF HOMOGENEOUS PHOSPHOLIPID VESICLES [J].
BARENHOLZ, Y ;
GIBBES, D ;
LITMAN, BJ ;
GOLL, J ;
THOMPSON, TE ;
CARLSON, FD .
BIOCHEMISTRY, 1977, 16 (12) :2806-2810
[3]   Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation [J].
Borhani, DW ;
Rogers, DP ;
Engler, JA ;
Brouillette, CG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (23) :12291-12296
[4]   ADULT RAT-BRAIN SYNAPTIC VESICLES .2. LIPID COMPOSITION [J].
BRECKENRIDGE, WC ;
MORGAN, IG ;
ZANETTA, JP ;
VINCENDON, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1973, 320 (03) :681-686
[5]   DETERMINATION OF SECONDARY STRUCTURES OF PROTEINS BY CIRCULAR-DICHROISM AND OPTICAL ROTATORY DISPERSION [J].
CHEN, YH ;
YANG, JT ;
MARTINEZ, HM .
BIOCHEMISTRY, 1972, 11 (22) :4120-+
[6]  
Chou P Y, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P45
[7]   EFFECTS OF ACCEPTOR PARTICLE-SIZE ON THE EFFLUX OF CELLULAR FREE-CHOLESTEROL [J].
DAVIDSON, WS ;
RODRIGUEZA, WV ;
LUNDKATZ, S ;
JOHNSON, WJ ;
ROTHBLAT, GH ;
PHILLIPS, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17106-17113
[8]   LIPIDS OF SYNAPTIC VESICLES - RELEVANCE TO THE MECHANISM OF MEMBRANE-FUSION [J].
DEUTSCH, JW ;
KELLY, RB .
BIOCHEMISTRY, 1981, 20 (02) :378-385
[9]   MECHANISMS FOR THE MODULATION OF MEMBRANE BILAYER PROPERTIES BY AMPHIPATHIC HELICAL PEPTIDES [J].
EPAND, RM ;
SHAI, YC ;
SEGREST, JP ;
ANANTHARAMAIAH, GM .
BIOPOLYMERS, 1995, 37 (05) :319-338
[10]   ANALYSIS OF ACCURACY AND IMPLICATIONS OF SIMPLE METHODS FOR PREDICTING SECONDARY STRUCTURE OF GLOBULAR PROTEINS [J].
GARNIER, J ;
OSGUTHORPE, DJ ;
ROBSON, B .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 120 (01) :97-120