Chapman-Enskog method and synchronization of globally coupled oscillators

被引:19
作者
Bonilla, LL [1 ]
机构
[1] Univ Carlos III Madrid, Escuela Polictecn Super, Leganes 28911, Spain
关键词
D O I
10.1103/PhysRevE.62.4862
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Chapman-Enskog method of kinetic theory is applied to two problems of synchronization of globally coupled phase oscillators. First, a modified Kuramoto model is obtained in the limit of small inertia from a more general model that includes "inertial'' effects. Second, a modified Chapman-Enskog method it; used to derive the amplitude equation for an O(2) Takens-Bogdanov bifurcation corresponding to the tricritical point of the Kuramoto model with a bimodal distribution of oscillator natural frequencies. This latter calculation shows that the Chapman-Enskog method is a convenient alternative to normal form calculations.
引用
收藏
页码:4862 / 4868
页数:7
相关论文
共 19 条
[1]   Synchronization in populations of globally coupled oscillators with inertial effects [J].
Acebrón, JA ;
Bonilla, LL ;
Spigler, R .
PHYSICAL REVIEW E, 2000, 62 (03) :3437-3454
[2]   Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators [J].
Acebron, JA ;
Spigler, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2229-2232
[4]   Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions [J].
Bonilla, LL ;
Vicente, CJP ;
Spigler, R .
PHYSICA D, 1998, 113 (01) :79-97
[5]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[6]  
Chapman S., 1970, MATH THEORY NONUNIFO
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]   THE TAKENS BOGDANOV BIFURCATION WITH O(2)-SYMMETRY [J].
DANGELMAYR, G ;
KNOBLOCH, E .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 322 (1565) :243-279
[9]   AN ADAPTIVE MODEL FOR SYNCHRONY IN THE FIREFLY PTEROPTYX-MALACCAE [J].
ERMENTROUT, B .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (06) :571-585
[10]   Noise effects on synchronization in systems of coupled oscillators [J].
Hong, H ;
Choi, MY ;
Yoon, BG ;
Park, K ;
Soh, KS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :L9-L15