Effects of mechanical forces on signal transduction and gene expression in endothelial cells

被引:470
作者
Chien, S
Li, S
Shyy, JYJ
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Inst Biomed Engn, La Jolla, CA 92093 USA
关键词
endothelial cells; hemodynamic forces; mechanical strain; mechanotransduction; shear stress; vascular biology;
D O I
10.1161/01.HYP.31.1.162
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Fluid shear stress and circumferential stretch play important roles in maintaining the homeostasis of the blood vessel, and they can also be pathophysiological factors in cardiovascular diseases such as atherosclerosis and hypertension. The uses of flow channels and stretch devices as in vitro models have helped to elucidate the mechanisms of signal transduction and gene expression in cultured endothelial cells in response to shear stress, which is a function of blood flow and vascular metry, or mechanical strain, which is a function of transmural pressure and the mechanical properties and geometry of the vessel. Shear stress has been found to increase the activities of a number of kinases to modulate the phosphorylation of many signaling proteins in endothelial cells, eg, the proteins in focal adhesion sites and the proteins in the mitogen-activated protein kinase pathways. Downstream to such signaling cascades, multiple transcription factors such as AP-1, NF-kappa B, Sp-1, and Egr-1 are activated. The actions of these transcription factors on the corresponding cis-elements result in the induction of genes encoding for vasoactivators, adhesion molecules, monocyte chemoattractants, and growth factors in endothelial cells, thus modulating vascular structure and function. Some of the effects of mechanical strain on endothelial cells are similar to those by shear stress, eg, the signaling pathways and the genes activated, but there are differences, eg, the time course of the responses. Studies on the effects of mechanical forces on signal transduction and gene expression provide insights into the molecular mechanisms by which hemodynamic factors regulate vascular physiology and pathophysiology.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 90 条
[1]   SHEAR-STRESS INHIBITS ADHESION OF CULTURED MOUSE ENDOTHELIAL-CELLS TO LYMPHOCYTES BY DOWN-REGULATING VCAM-1 EXPRESSION [J].
ANDO, J ;
TSUBOI, H ;
KORENAGA, R ;
TAKADA, Y ;
TOYAMASORIMACHI, N ;
MIYASAKA, M ;
KAMIYA, A .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (03) :C679-C687
[2]  
ANDO J, 1988, IN VITRO CELL DEV B, V24, P871
[3]   CYCLIC STRAIN UP-REGULATES NITRIC-OXIDE SYNTHASE IN CULTURED BOVINE AORTIC ENDOTHELIAL-CELLS [J].
AWOLESI, MA ;
SESSA, WC ;
SUMPIO, BE .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (03) :1449-1454
[4]   CYCLICAL STRAIN EFFECTS ON PRODUCTION OF VASOACTIVE MATERIALS IN CULTURED ENDOTHELIAL-CELLS [J].
CAROSI, JA ;
ESKIN, SG ;
MCINTIRE, LV .
JOURNAL OF CELLULAR PHYSIOLOGY, 1992, 151 (01) :29-36
[5]   HUMAN SOS1 - A GUANINE-NUCLEOTIDE EXCHANGE FACTOR FOR RAS THAT BINDS TO GRB2 [J].
CHARDIN, P ;
CAMONIS, JH ;
GALE, NW ;
VANAELST, L ;
SCHLESSINGER, J ;
WIGLER, MH ;
BARSAGI, D .
SCIENCE, 1993, 260 (5112) :1338-1343
[6]   Cyclic strain-induced plasminogen activator inhibitor-1 (PAI-1) release from endothelial cells involves reactive oxygen species [J].
Cheng, JJ ;
Chao, YJ ;
Wung, BS ;
Wang, DL .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 225 (01) :100-105
[7]   Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression [J].
Cheng, JJ ;
Wung, BS ;
Chao, YJ ;
Wang, DL .
HYPERTENSION, 1996, 28 (03) :386-391
[8]   Shear stress augments expression of C-type natriuretic peptide and adrenomedullin [J].
Chun, TH ;
Itoh, H ;
Ogawa, Y ;
Tamura, N ;
Takaya, K ;
Igaki, T ;
Yamashita, J ;
Doi, K ;
Inoue, M ;
Masatsugu, K ;
Korenaga, R ;
Ando, J ;
Nakao, K .
HYPERTENSION, 1997, 29 (06) :1296-1302
[9]   Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain [J].
Cohen, CR ;
Mills, I ;
Du, W ;
Kamal, K ;
Sumpio, BE .
EXPERIMENTAL CELL RESEARCH, 1997, 231 (01) :184-189
[10]   Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress [J].
Corson, MA ;
James, NL ;
Latta, SE ;
Nerem, RM ;
Berk, BC ;
Harrison, DG .
CIRCULATION RESEARCH, 1996, 79 (05) :984-991