Development of mice expressing a single D-type cyclin

被引:219
作者
Ciemerych, MA
Kenney, AM
Sicinska, E
Kalaszczynska, I
Bronson, RT
Rowitch, DH
Gardner, H
Sicinski, P
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02115 USA
[4] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA
[5] Tufts Univ, Sch Vet Med, North Grafton, MA 01536 USA
[6] Biogen Inc, Cambridge, MA 02142 USA
关键词
cell cycle; D-cyclins; mouse development; cell proliferation;
D O I
10.1101/gad.1023602
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
D-cyclins (cyclins D1, D2, and D3) are components of the core cell cycle machinery. To directly test the ability of each D-cyclin to drive development of various lineages, we generated mice expressing only cyclin D1, or only cyclin D2, or only cyclin D3. We found that these "single-cyclin" embryos develop normally until late gestation. Our analyses revealed that in single-cyclin embryos, the tissue-specific expression pattern of D-cyclins was lost. Instead, mutant embryos ubiquitously expressed the remaining D-cyclin. These findings suggest that the functions of the three D-cyclins are largely exchangeable at this stage. Later in life, single-cyclin mice displayed focused abnormalities, resulting in premature mortality. "Cyclin D1-only" mice developed severe megaloblastic anemia, "cyclin D2-only" mice presented neurological abnormalities, and "cyclin D3-only" mice lacked normal cerebella. Analyses of the affected tissues revealed that these compartments failed to sufficiently up-regulate the remaining, intact D-cyclin. In particular, we found that in cerebellar granule neuron precursors, the N-myc transcription factor communicates with the cell cycle machinery via cyclins D1 and D2, but not D3, explaining the inability of D3-only mice to up-regulate cyclin D3 in this compartment. Hence, the requirement for a particular cyclin in a given tissue is likely caused by specific transcription factors, rather than by unique properties of cyclins.
引用
收藏
页码:3277 / 3289
页数:13
相关论文
共 49 条
[1]   Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks [J].
Adams, PD .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2001, 1471 (03) :M123-M133
[2]  
AGUZZI A, 1996, TRANSGENICS, V2, P29
[3]  
Altman J., 1997, DEV CEREBELLAR SYSTE
[4]   Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation [J].
Bartkova, J ;
Lukas, J ;
Strauss, M ;
Bartek, J .
ONCOGENE, 1998, 17 (08) :1027-1037
[5]  
BATES S, 1994, ONCOGENE, V9, P71
[6]   The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts [J].
Cheng, MG ;
Olivier, P ;
Diehl, JA ;
Fero, M ;
Roussel, MF ;
Roberts, JM ;
Sherr, CJ .
EMBO JOURNAL, 1999, 18 (06) :1571-1583
[7]  
Doglioni C, 1998, J PATHOL, V185, P159, DOI 10.1002/(SICI)1096-9896(199806)185:2<159::AID-PATH73>3.0.CO
[8]  
2-0
[9]   MICE LACKING CYCLIN D1 ARE SMALL AND SHOW DEFECTS IN EYE AND MAMMARY-GLAND DEVELOPMENT [J].
FANTL, V ;
STAMP, G ;
ANDREWS, A ;
ROSEWELL, I ;
DICKSON, C .
GENES & DEVELOPMENT, 1995, 9 (19) :2364-2372
[10]   Rescue of cyclin D1 deficiency by knockin cyclin E [J].
Geng, Y ;
Whoriskey, W ;
Park, MY ;
Bronson, RT ;
Medema, RH ;
Li, TS ;
Weinberg, RA ;
Sicinski, P .
CELL, 1999, 97 (06) :767-777