Molecular artificial photosynthesis

被引:799
作者
Berardi, Serena [1 ]
Drouet, Samuel [1 ]
Francas, Laia [1 ]
Gimbert-Surinach, Carolina [1 ]
Guttentag, Miguel [1 ]
Richmond, Craig [1 ]
Stoll, Thibaut [1 ]
Llobet, Antoni [1 ,2 ]
机构
[1] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain
[2] Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain
关键词
DRIVEN HYDROGEN-PRODUCTION; SENSITIZED SOLAR-CELLS; ELECTROCATALYTIC WATER OXIDATION; CO2; REDUCTION; ELECTROCHEMICAL REDUCTION; TURNOVER FREQUENCY; CARBON-DIOXIDE; CATALYST; COMPLEXES; SELECTIVITY;
D O I
10.1039/c3cs60405e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The replacement of fossil fuels by a clean and renewable energy source is one of the most urgent and challenging issues our society is facing today, which is why intense research has been devoted to this topic recently. Nature has been using sunlight as the primary energy input to oxidise water and generate carbohydrates (solar fuel) for over a billion years. Inspired, but not constrained, by nature, artificial systems can be designed to capture light and oxidise water and reduce protons or other organic compounds to generate useful chemical fuels. This tutorial review covers the primary topics that need to be understood and mastered in order to come up with practical solutions for the generation of solar fuels. These topics are: the fundamentals of light capturing and conversion, water oxidation catalysis, proton and CO2 reduction catalysis and the combination of all of these for the construction of complete cells for the generation of solar fuels.
引用
收藏
页码:7501 / 7519
页数:19
相关论文
共 50 条
[1]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[2]   Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes [J].
Arai, Takeo ;
Sato, Shunsuke ;
Kajino, Tsutomu ;
Morikawa, Takeshi .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1274-1282
[3]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[4]  
Barnett SM, 2012, NAT CHEM, V4, P498, DOI [10.1038/NCHEM.1350, 10.1038/nchem.1350]
[5]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[6]  
Bofill R., 2013, COMPREHENSIVE INORGA, P505
[7]   Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis [J].
Boyer, Julie L. ;
Rochford, Jonathan ;
Tsai, Ming-Kang ;
Muckerman, James T. ;
Fujita, Etsuko .
COORDINATION CHEMISTRY REVIEWS, 2010, 254 (3-4) :309-330
[8]   A review of solar photovoltaic levelized cost of electricity [J].
Branker, K. ;
Pathak, M. J. M. ;
Pearce, J. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (09) :4470-4482
[9]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[10]   Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution [J].
Chen, Shiyou ;
Wang, Lin-Wang .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3659-3666