RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and γ-actin genes

被引:57
作者
Cheng, CH
Sharp, PA [1 ]
机构
[1] MIT, Ctr Canc Res, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
关键词
D O I
10.1128/MCB.23.6.1961-1967.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol II) can be phosphorylated at serine 2 (Ser-2) and serine 5 (Ser-5) of the CTD heptad repeat YSPTSPS, and this phosphorylation is important in coupling transcription to RNA processing, including 5' capping, splicing, and polyadenylation. The mammalian endogenous dihydrofolate reductase and gamma-actin genes have been used to study the association of Pol II with different regions of transcribed genes (promoter-proximal compared to distal regions) and the phosphorylation status of its CTD. For both genes, Poll II is more concentrated in the promoter-proximal regions than in the interior regions. Moreover, different phosphorylation forms of Pol II are associated with distinct regions. Ser-5 phosphorylation of Pol II is concentrated near the promoter, while Ser-2 phosphorylation is observed throughout the gene. These results suggest that the accumulation of paused Pol II in promoter-proximal regions may be a common feature of gene regulation in mammalian cells.
引用
收藏
页码:1961 / 1967
页数:7
相关论文
共 38 条
[1]   Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter [J].
Agalioti, T ;
Lomvardas, S ;
Parekh, B ;
Yie, JM ;
Maniatis, T ;
Thanos, D .
CELL, 2000, 103 (04) :667-678
[2]   High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo:: roles in promoter proximal pausing and transcription elongation [J].
Andrulis, ED ;
Guzmán, E ;
Döring, P ;
Werner, J ;
Lis, JT .
GENES & DEVELOPMENT, 2000, 14 (20) :2635-2649
[3]  
CAREY M, 1999, TRANSCRIPTIONAL REGU, P87
[4]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[5]   Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain [J].
Cho, EJ ;
Kobor, MS ;
Kim, M ;
Greenblatt, J ;
Buratowski, S .
GENES & DEVELOPMENT, 2001, 15 (24) :3319-3329
[6]   c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism [J].
Eberhardy, SR ;
Farnham, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48562-48571
[7]   Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II:: different functions for different segments of the CTD [J].
Fong, N ;
Bentley, DL .
GENES & DEVELOPMENT, 2001, 15 (14) :1783-1795
[8]   Promoter-specific hypoacetylation of X-inactivated genes [J].
Gilbert, SL ;
Sharp, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13825-13830
[9]   RNA polymerase II is an essential mRNA polyadenylation factor [J].
Hirose, Y ;
Manley, JL .
NATURE, 1998, 395 (6697) :93-96
[10]   Phosphorylated RNA polymerase II stimulates pre-mRNA splicing [J].
Hirose, Y ;
Tacke, R ;
Manley, JL .
GENES & DEVELOPMENT, 1999, 13 (10) :1234-1239