Signaling of cell death and cell survival following focal cerebral ischemia: Life and death struggle in the penumbra

被引:310
作者
Ferrer, I
Planas, AM
机构
[1] Univ Barcelona, Hosp Princeps Espanya, Serv Anat Patol, Inst Neuropatol, Lhospitalet De Llobregat 08907, Spain
[2] Univ Barcelona, Dept Biol Cellular & Anat Patol, Barcelona, Spain
[3] CSIC, Inst Invest Biomed, Dept Farmacol & Toxicol, IDIBAPS, Barcelona, Spain
关键词
apoptosis; Bax; Bcl-2; caspase; Fas; focal ischemia; Smac/DIABLO;
D O I
10.1093/jnen/62.4.329
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Focal ischemia by middle cerebral artery occlusion (MCAO) results in necrosis at the infarct core and activation of complex signal pathways for cell death and cell survival in the penumbra. Recent studies have shown activation of the extrinsic and intrinsic pathways of caspase-mediated cell death, as well as activation of the caspase-independent signaling pathway of apoptosis in several paradigms of focal cerebral ischemia by transient MCAO to adult rats and mice. The extrinsic pathway (cell-death receptor pathway) is initiated by activation of the Fas receptor after binding to the Fas ligand (Fas-L); increased Fas and Fas-L expression has been shown following focal ischemia. Moreover, focal ischemia is greatly reduced in mice expressing mutated (nonfunctional) Fas. Increased expression of caspase-1, -3, -8, and -9, and of cleaved caspase-8, has been observed in the penumbra. Activation of the intrinsic (mitochondrial) pathway following focal ischemia is triggered by Bax translocation to and competition with Bcl-2 and other members of the Bcl-2 family in the mitochondria membrane that is followed by cytochrome c release to the cytosol. Bcl-2 over-expression reduces infarct size. Cytochrome c binds to Apaf-1 and dATP and recruits and cleaves pro-caspase-9 in the apoptosome. Both caspase-8 and caspase-9 activate caspase-3, among other caspases. which in turn cleave several crucial substrates, including the DNA-repairing enzyme poly (ADP-ribose) polymerase (PARP), into fragments of 89 and 28 kDa. Inhibition of caspase-3 reduces the infarct size, further supporting caspase-3 activation following transient MCAO. In addition. caspase-8 cleaves Bid, the truncated form of which has the capacity to translocate to the mitochondria and induce cytochrome e release. The volume of brain infarct is greatly reduced in Bid-deficient mice, thus indicating activation of the mitochondrial pathway by cell-death receptors following focal ischemia. Recent studies have shown the mitochondrial release of other factors; Smac/DIABLO (Smac: second mitochondrial activator of caspases: DIABLO: direct IAP binding protein with low pl) binds to and neutralizes the effects of the X-linked inhibitor of apoptosis (XIAP). Finally, apoptosis-inducing factor (AIF) translocates to the mitochondria and the nucleus following focal ischemia and produces peripheral chromatin condensation and large-scale DNA strands. thus leading to the caspase-independent cell death pathway of apoptosis. Delineation of the pro-apoptotic and pro-survival signals in the penumbra may not only increase understanding of the process but also help to rationalize strategies geared to reducing brain damage targeted at tire periphery of the infarct core.
引用
收藏
页码:329 / 339
页数:11
相关论文
共 64 条
[1]   Life-or-death decisions by the Bcl-2 protein family [J].
Adams, JM ;
Cory, S .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (01) :61-66
[2]   Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J].
Adrain, C ;
Creagh, EM ;
Martin, SJ .
EMBO JOURNAL, 2001, 20 (23) :6627-6636
[3]   THRESHOLDS IN CEREBRAL-ISCHEMIA - THE ISCHEMIC PENUMBRA [J].
ASTRUP, J ;
SIESJO, BK ;
SYMON, L .
STROKE, 1981, 12 (06) :723-725
[4]  
Back T, 1998, CELL MOL NEUROBIOL, V18, P621, DOI 10.1023/A:1020265701407
[5]   Stress management - heat shock protein-70 and the regulation of apoptosis [J].
Beere, HM ;
Green, DR .
TRENDS IN CELL BIOLOGY, 2001, 11 (01) :6-10
[6]   Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2 [J].
Benchoua, A ;
Couriaud, C ;
Guégan, C ;
Tartier, L ;
Couvert, P ;
Friocourt, G ;
Chelly, J ;
Ménissier-de Murcia, J ;
Onténiente, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :34217-34222
[7]   The Apaf-1 apoptosome: a large caspase-activating complex [J].
Cain, K ;
Bratton, SB ;
Cohen, GM .
BIOCHIMIE, 2002, 84 (2-3) :203-214
[8]   Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat [J].
Campagne, MV ;
Gill, R .
NEUROSCIENCE LETTERS, 1996, 213 (02) :111-114
[9]   Apoptosis-inducing factor (AIF):: a novel caspase-independent death effector released from mitochondria [J].
Candé, C ;
Cohen, I ;
Daugas, E ;
Ravagnan, L ;
Larochette, N ;
Zamzami, N ;
Kroemer, G .
BIOCHIMIE, 2002, 84 (2-3) :215-222
[10]   Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death [J].
Cao, GD ;
Minami, M ;
Pei, W ;
Yan, CH ;
Chen, DX ;
O'Horo, C ;
Graham, SH ;
Chen, J .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (04) :321-333