Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes

被引:125
作者
Armstrong, N
Mayer, M
Gouaux, E
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
[3] NICHHD, Lab Cellular & Mol Neurophysiol, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1073/pnas.1037393100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole) propionic acid (AMPA) receptor discriminates between agonists in terms of binding and channel gating; AMPA is a high-affinity full agonist, whereas kainate is a low-affinity partial agonist. Although there is extensive literature on the functional characterization of partial agonist activity in ion channels, structure-based mechanisms are scarce. Here we investigate the role of Leu-650, a binding cleft residue conserved among AMPA receptors, in maintaining agonist specificity and regulating agonist binding and channel gating by using physiological, x-ray crystallographic, and biochemical techniques. Changing Leu-650 to Thr yields a receptor that responds more potently and efficaciously to kainate and less potently and efficaciously to AMPA relative to the WT receptor. Crystal structures of the Leu-650 to Thr mutant reveal an increase in domain closure in the kainate-bound state and a partially closed and a fully closed conformation in the AMPA-bound form. Our results indicate that agonists can induce a range of conformations in the GluR2 ligand-binding core and that domain closure is directly correlated to channel activation. The partially closed, AMPA-bound conformation of the L650T mutant likely captures the structure of an agonist-bound, inactive state of the receptor. Together with previously solved structures, we have determined a mechanism of agonist binding and subsequent conformational rearrangements.
引用
收藏
页码:5736 / 5741
页数:6
相关论文
共 32 条
[1]   Agonist-induced isomerization in a glutamate receptor ligand-binding domain -: A kinetic and mutagenetic analysis [J].
Abele, R ;
Keinänen, K ;
Madden, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) :21355-21363
[2]   Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core [J].
Armstrong, N ;
Gouaux, E .
NEURON, 2000, 28 (01) :165-181
[3]   Structure of a glutamate-receptor ligand-binding core in complex with kainate [J].
Armstrong, N ;
Sun, Y ;
Chen, GQ ;
Gouaux, E .
NATURE, 1998, 395 (6705) :913-917
[4]   MOLECULAR-CLONING AND FUNCTIONAL EXPRESSION OF GLUTAMATE RECEPTOR SUBUNIT GENES [J].
BOULTER, J ;
HOLLMANN, M ;
OSHEAGREENFIELD, A ;
HARTLEY, M ;
DENERIS, E ;
MARON, C ;
HEINEMANN, S .
SCIENCE, 1990, 249 (4972) :1033-1037
[5]  
Brunger A. T., 1992, X PLOR SYSTEM XRAY C
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]   High level production, characterization and construct optimization of the ionotropic glutamate receptor ligand binding core [J].
Chen, GQ ;
Gouaux, E .
TETRAHEDRON, 2000, 56 (48) :9409-9419
[8]   Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct [J].
Chen, GQ ;
Sun, Y ;
Jin, RS ;
Gouaux, E .
PROTEIN SCIENCE, 1998, 7 (12) :2623-2630
[9]  
Dingledine R, 1999, PHARMACOL REV, V51, P7
[10]  
Hille B., 2001, Ion channels of excitable membranes, V3rd