Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

被引:66
作者
Birdja, Yuvraj Y. [1 ]
Shen, Jing [1 ,2 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
[2] Hunan Inst Engn, Chem & Chem Engn Dept, Xiangtan, Peoples R China
关键词
Carbon dioxide reduction; Hydrogen evolution; Formic acid formation; Immobilized molecular catalysts; Metalloporphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; MOLECULAR CATALYSIS; ELECTRODES; IRON; CONVERSION; COBALT; TETRAPHENYLPORPHYRINS; ELECTROREDUCTION; COMPLEXES;
D O I
10.1016/j.cattod.2017.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic conversion of carbon dioxide has gained much interest for the synthesis of value-added chemicals and solar fuels. Important issues such as high overpotentials and competition of hydrogen evolution still need to be overcome for deeper insight into the reaction mechanism in order to steer the selectivity towards specific products. Herein we report on several metalloprotoporphyrins immobilized on a pyrolytic graphite electrode for the selective reduction of carbon dioxide to formic acid. No formic acid is detected on Cr-, Mn-, Co- and Fe-protoporphyrins in perchloric acid of pH 3, while Ni-, Pd-, Cu and Ga-protoporphyrins show only a little formic acid. Rh, In and Sn metal centers produce significant amounts of formic acid. However, the faradaic efficiency varies from 1% to 70% depending on the metal center, the pH of the electrolyte and the applied potential. The differentiation of the faradaic efficiency for formic acid on these metalloprotoporphyrins is strongly related to the activity of the porphyrin for the hydrogen evolution reaction. CO2 reduction on Rh-protoporphyrin is shown to be coupled strongly to the hydrogen evolution reaction, whilst on Sn-and In-protoporphyrin such strong coupling between the two reactions is absent. The activity for the hydrogen evolution increases in the order In < Sn < Rh metal centers, leading to faradaic efficiency for formic acid increasing in the order Rh < Sn < In metal centers. In-protoporphyrin is the most stable and shows a high faradaic efficiency of ca. 70%, at a pH of 9.6 and a potential of -1.9V vs RHE. Experiments in bicarbonate electrolyte were performed in an attempt to qualitatively study the role of bicarbonate in formic acid formation. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 56 条
[1]  
[Anonymous], 2014, Fifth assessment report (AR5). Synthesis Report
[2]   The contribution of the utilization option to reducing the CO2 atmospheric loading:: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use [J].
Aresta, M ;
Dibenedetto, A .
CATALYSIS TODAY, 2004, 98 (04) :455-462
[3]   COBALT(II) TETRAPHENYLPORPHYRIN PYRIDINE COMPLEX FIXED ON A GLASSY-CARBON ELECTRODE AND ITS PROMINENT CATALYTIC ACTIVITY FOR REDUCTION OF CARBON-DIOXIDE [J].
ATOGUCHI, T ;
ARAMATA, A ;
KAZUSAKA, A ;
ENYO, M .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1991, (03) :156-157
[4]   ELECTROCATALYTIC ACTIVITY OF COIITPP-PYRIDINE COMPLEX MODIFIED CARBON ELECTRODE FOR CO2 REDUCTION [J].
ATOGUCHI, T ;
ARAMATA, A ;
KAZUSAKA, A ;
ENYO, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 318 (1-2) :309-320
[5]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON VARIOUS METAL-ELECTRODES IN LOW-TEMPERATURE AQUEOUS KHCO3 MEDIA [J].
AZUMA, M ;
HASHIMOTO, K ;
HIRAMOTO, M ;
WATANABE, M ;
SAKATA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1772-1778
[6]   CO2 storage in geological media:: Role, means, status and barriers to deployment [J].
Bachu, Stefan .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (02) :254-273
[7]   Optimization methods applied to renewable and sustainable energy: A review [J].
Banos, R. ;
Manzano-Agugliaro, F. ;
Montoya, F. G. ;
Gil, C. ;
Alcayde, A. ;
Gomez, J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1753-1766
[8]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[9]   ELECTROCHEMICAL POLYMERIZATION OF AMINO-SUBSTITUTED, PYRROLE-SUBSTITUTED, AND HYDROXY-SUBSTITUTED TETRAPHENYLPORPHYRINS [J].
BETTELHEIM, A ;
WHITE, BA ;
RAYBUCK, SA ;
MURRAY, RW .
INORGANIC CHEMISTRY, 1987, 26 (07) :1009-1017
[10]   ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE BY 2,2'-BIPYRIDINE COMPLEXES OF RHODIUM AND IRIDIUM [J].
BOLINGER, CM ;
STORY, N ;
SULLIVAN, BP ;
MEYER, TJ .
INORGANIC CHEMISTRY, 1988, 27 (25) :4582-4587