Integral behavior for localized synchronization in nonidentical extended systems

被引:14
作者
Bragard, J
Boccaletti, S
机构
[1] Univ Liege, Dept Phys B5, B-4000 Liege, Belgium
[2] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6346
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional complex Ginzburg-Landau equations. The two fields are prepared in different dynamical regimes, and interact via an imperfect coupling consisting of a given number of local controllers N-c. The strength of the coupling is ruled by the parameter epsilon. We show that, in the limit of three controllers per correlation length, the synchronization behavior is not affected if the product epsilonN(c) /N is kept constant, providing a sort of integral behavior for localized synchronization.
引用
收藏
页码:6346 / 6351
页数:6
相关论文
共 29 条
[1]   Synchronization of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency [J].
Amengual, A ;
HernandezGarcia, E ;
Montagne, R ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4379-4382
[2]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[3]   Controlling and synchronizing space time chaos [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT .
PHYSICAL REVIEW E, 1999, 59 (06) :6574-6578
[4]  
BRAGARD J, IN PRESS INT J BIFUR
[5]   Forcing oscillatory media:: phase kinks vs. synchronization [J].
Chaté, H ;
Pikovsky, A ;
Rudzick, O .
PHYSICA D, 1999, 131 (1-4) :17-30
[6]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204
[7]  
Cladis P.E., 1995, SPATIOTEMPORAL PATTE
[8]   OPTICAL VORTICES [J].
COULLET, P ;
GIL, L ;
ROCCA, F .
OPTICS COMMUNICATIONS, 1989, 73 (05) :403-408
[9]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[10]   RELATION BETWEEN FRACTAL DIMENSION AND SPATIAL CORRELATION LENGTH FOR EXTENSIVE CHAOS [J].
EGOLF, DA ;
GREENSIDE, HS .
NATURE, 1994, 369 (6476) :129-131