Limitations on practical quantum cryptography

被引:1012
作者
Brassard, G
Lütkenhaus, N
Mor, T
Sanders, BC
机构
[1] Univ Montreal, Dept IRO, Montreal, PQ H3C 3J7, Canada
[2] Helsinki Inst Phys, Helsinki 00014, Finland
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Coll Judea & Samaria, Ariel, Israel
[5] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
关键词
D O I
10.1103/PhysRevLett.85.1330
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide limits to practical quantum key distribution, taking into account channel losses, a realistic detection process, and imperfections in the "qubits" sent from the sender to the receiver. As we show, even quantum key distribution with perfect qubits might not be achievable over long distances when the other imperfections are taken into account. Furthermore, existing experimental schemes (based on weak pulses) currently do not offer unconditional security for the reported distances and signal strength. Finally we show that parametric down-conversion offers enhanced performance compared to its weak coherent pulse counterpart.
引用
收藏
页码:1330 / 1333
页数:4
相关论文
共 25 条
[1]  
[Anonymous], COMMUNICATION
[2]  
[Anonymous], 2001, LECT NOTES COMPUTER
[3]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[4]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[6]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[7]   QUANTUM CRYPTOGRAPHY [J].
BENNETT, CH ;
BRASSARD, G ;
EKERT, AK .
SCIENTIFIC AMERICAN, 1992, 267 (04) :50-57
[8]   Bounds on information and the security of quantum cryptography [J].
Biham, E ;
Mor, T .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4034-4037
[9]  
Biham E., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P715, DOI 10.1145/335305.335406
[10]  
BIHAM E, QUANTPH9801022