Forces between silica surfaces in aqueous solutions of a weak polyelectrolyte

被引:74
作者
Biggs, S [1 ]
Proud, AD [1 ]
机构
[1] Univ Newcastle, Dept Chem, Callaghan, NSW 2308, Australia
关键词
D O I
10.1021/la970548s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The forces between negatively charged silica surfaces in the presence of a weak polyelectrolyte, poly (2-vinylpyridine), were measured as a function of polymer concentration, salt concentration, solution pH, and surface collision rates. The solubility of the polymer is highly dependent on the solution pH; that is, when the molar concentration of solution protons is equivalent to the molar concentration of pyridine groups the polymer is > 70% protonated and is highly soluble. As the pH increases, the degree of protonation decreases and the polymer becomes insoluble and precipitates from solution. At low polymer concentrations, low salt concentration, and a low pH, the polymer adsorbs strongly with an essentially flat conformation. The forces during compression are well described by DLVO (Derjaguin-Landau-Verwey-Overbeek) theory with no steric forces apparent. During decompression, the adhesive forces are much greater than those between the bare silica surfaces, indicating a strong bridging between the surfaces after contact and a sub-monolayer coverage. At higher polymer concentrations and/or salt levels, a steric interaction is seen during the compression runs and a significant decrease in the adhesion is observed. Both of these results imply a more expanded conformation of the polymer at the surface and a higher surface coverage. Increased collision rates between the surfaces give rise to an increase in the magnitude of the observed steric forces. Such an increase is attributed to an increased apparent stiffness of the chains as the compression rate increases. Measurements in a poor solvent resulted in the appearance of shallow long-range intersegmental attractive force.
引用
收藏
页码:7202 / 7210
页数:9
相关论文
共 39 条
[1]   ELECTRIC DOUBLE-LAYER FORCES IN THE PRESENCE OF POLY-ELECTROLYTES [J].
AKESSON, T ;
WOODWARD, C ;
JONSSON, B .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (04) :2461-2469
[2]  
BEKTUROV EA, 1986, SYNTHETIC WATER SOLU
[3]   Non-equilibrium interaction forces between adsorbed polymer layers [J].
Biggs, S .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (15) :2783-2789
[4]   MEASUREMENT OF THE FORCES BETWEEN GOLD SURFACES IN WATER BY ATOMIC-FORCE MICROSCOPY [J].
BIGGS, S ;
MULVANEY, P .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (11) :8501-8505
[5]   STUDY OF ANION ADSORPTION AT THE GOLD-AQUEOUS SOLUTION INTERFACE BY ATOMIC-FORCE MICROSCOPY [J].
BIGGS, S ;
MULVANEY, P ;
ZUKOSKI, CF ;
GRIESER, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (20) :9150-9157
[6]   EFFECTS OF CITRATE ADSORPTION ON THE INTERACTIONS BETWEEN ZIRCONIA SURFACES [J].
BIGGS, S ;
SCALES, PJ ;
LEONG, YK ;
HEALY, TW .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1995, 91 (17) :2921-2928
[7]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[8]   MEASURING ELECTROSTATIC, VANDERWAALS, AND HYDRATION FORCES IN ELECTROLYTE-SOLUTIONS WITH AN ATOMIC FORCE MICROSCOPE [J].
BUTT, HJ .
BIOPHYSICAL JOURNAL, 1991, 60 (06) :1438-1444
[9]   A SIMPLE ALGORITHM FOR THE CALCULATION OF THE ELECTROSTATIC REPULSION BETWEEN IDENTICAL CHARGED SURFACES IN ELECTROLYTE [J].
CHAN, DYC ;
PASHLEY, RM ;
WHITE, LR .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1980, 77 (01) :283-285
[10]   FORCES BETWEEN POLYELECTROLYTE-COATED SURFACES - RELATIONS BETWEEN SURFACE INTERACTION AND FLOC PROPERTIES [J].
CLAESSON, PM ;
DAHLGREN, MAG ;
ERIKSSON, L .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1994, 93 :293-303