ProbABEL package for genome-wide association analysis of imputed data

被引:318
作者
Aulchenko, Yurii S. [1 ,2 ]
Struchalin, Maksim V. [1 ]
van Duijn, Cornelia M. [1 ]
机构
[1] Erasmus MC, Dept Epidemiol, NL-3000 CA Rotterdam, Netherlands
[2] RAS, Inst Cytol & Genet, SD, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
MIXED-MODEL; IMPUTATION; POWER; LOCI;
D O I
10.1186/1471-2105-11-134
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account. Results: We developed the ProbABEL software package for the analysis of genome-wide imputed SNP data and quantitative, binary, and time-till-event outcomes under linear, logistic, and Cox proportional hazards models, respectively. For quantitative traits, the package also implements a fast two-step mixed model-based score test for association in samples with differential relationships, facilitating analysis in family-based studies, studies performed in human genetically isolated populations and outbred animal populations. Conclusions: ProbABEL package provides fast efficient way to analyze imputed data in genome-wide context and will facilitate future identification of complex trait loci.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Merlin-rapid analysis of dense genetic maps using sparse gene flow trees [J].
Abecasis, GR ;
Cherny, SS ;
Cookson, WO ;
Cardon, LR .
NATURE GENETICS, 2002, 30 (01) :97-101
[2]   A Genomic Background Based Method for Association Analysis in Related Individuals [J].
Amin, Najaf ;
van Duijn, Cornelia M. ;
Aulchenko, Yurii S. .
PLOS ONE, 2007, 2 (12)
[3]   Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms [J].
Anderson, Carl A. ;
Pettersson, Fredrik H. ;
Barrett, Jeffrey C. ;
Zhuang, Joanna J. ;
Ragoussis, Jiannis ;
Cardon, Lon R. ;
Morris, Andrew P. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (01) :112-119
[4]  
Astle W., Statistical Science
[5]   Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis [J].
Aulchenko, Yurii S. ;
de Koning, Dirk-Jan ;
Haley, Chris .
GENETICS, 2007, 177 (01) :577-585
[6]   GenABEL: an R library for genome-wide association analysis [J].
Aulchenko, Yurii S. ;
Ripke, Stephan ;
Isaacs, Aaron ;
Van Duijn, Cornelia M. .
BIOINFORMATICS, 2007, 23 (10) :1294-1296
[7]   Linkage analysis of adult height in a large pedigree from a Dutch genetically isolated population [J].
Axenovich, Tatiana I. ;
Zorkoltseva, I. V. ;
Belonogova, N. M. ;
Struchalin, M. V. ;
Kirichenko, A. V. ;
Kayser, M. ;
Oostra, B. A. ;
van Duijn, C. M. ;
Aulchenko, Y. S. .
HUMAN GENETICS, 2009, 126 (03) :457-471
[8]   Family-based association tests for genomewide association scans [J].
Chen, Wei-Min ;
Abecasis, Goncalo R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :913-926
[9]   An R package for analysis of whole-genome association studies [J].
Clayton, David ;
Leung, Hin-Tak .
HUMAN HEREDITY, 2007, 64 (01) :45-51
[10]   Genomic control for association studies [J].
Devlin, B ;
Roeder, K .
BIOMETRICS, 1999, 55 (04) :997-1004