Insulin-like growth factor 1 regulates developing brain glucose metabolism

被引:161
作者
Cheng, CM [1 ]
Reinhardt, RR [1 ]
Lee, WH [1 ]
Joncas, G [1 ]
Patel, SC [1 ]
Bondy, CA [1 ]
机构
[1] NICHHD, Dev Endocrinol Branch, NIH, Bethesda, MD 20892 USA
关键词
mental retardation; glycogen synthase kinase; glucose transporter; GLUT4; Akt;
D O I
10.1073/pnas.170008497
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The brain has enormous anabolic needs during early postnatal development, This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-D-[1-C-14]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1-/- mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-D-[1-C-14]glucose is significantly reduced in synaptosomes prepared from Igf1-/- brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1-/- neurons. Phosphorylation of glycogen synthase kinase 3 beta and glycogen accumulation also are reduced in Igf1-/- neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.
引用
收藏
页码:10236 / 10241
页数:6
相关论文
共 39 条
[1]   BRAIN NEURONS DEVELOP IN A SERUM AND GLIAL FREE ENVIRONMENT - EFFECTS OF TRANSFERRIN, INSULIN, INSULIN-LIKE GROWTH FACTOR-I AND THYROID-HORMONE ON NEURONAL SURVIVAL, GROWTH AND DIFFERENTIATION [J].
AIZENMAN, Y ;
DEVELLIS, J .
BRAIN RESEARCH, 1987, 406 (1-2) :32-42
[2]   DIFFERING EXPRESSION OF INSULIN-LIKE GROWTH FACTOR-I IN DEVELOPING AND IN THE ADULT-RAT CEREBELLUM [J].
ANDERSSON, IK ;
EDWALL, D ;
NORSTEDT, G ;
ROZELL, B ;
SKOTTNER, A ;
HANSSON, HA .
ACTA PHYSIOLOGICA SCANDINAVICA, 1988, 132 (02) :167-173
[3]   LOCALIZATION OF INSULIN-LIKE GROWTH FACTOR-I MESSENGER-RNA IN MURINE CENTRAL-NERVOUS-SYSTEM DURING POSTNATAL-DEVELOPMENT [J].
BARTLETT, WP ;
LI, XS ;
WILLIAMS, M ;
BENKOVIC, S .
DEVELOPMENTAL BIOLOGY, 1991, 147 (01) :239-250
[4]   INSULIN IN THE BRAIN [J].
BASKIN, DG ;
FIGLEWICZ, DP ;
WOODS, SC ;
PORTE, D ;
DORSA, DM .
ANNUAL REVIEW OF PHYSIOLOGY, 1987, 49 :335-347
[5]   IGF1 GENE DISRUPTION RESULTS IN REDUCED BRAIN SIZE, CNS HYPOMYELINATION, AND LOSS OF HIPPOCAMPAL GRANULE AND STRIATAL PARVALBUMIN-CONTAINING NEURONS [J].
BECK, KD ;
POWELLBRAXTON, L ;
WIDMER, HR ;
VALVERDE, J ;
HEFTI, F .
NEURON, 1995, 14 (04) :717-730
[6]   LOCALIZATION OF BINDING-SITES FOR INSULIN-LIKE GROWTH FACTOR-I (IGF-I) IN THE RAT-BRAIN BY QUANTITATIVE AUTORADIOGRAPHY [J].
BOHANNON, NJ ;
CORP, ES ;
WILCOX, BJ ;
FIGLEWICZ, DP ;
DORSA, DM ;
BASKIN, DG .
BRAIN RESEARCH, 1988, 444 (02) :205-213
[7]   CELLULAR-PATTERN OF TYPE-I INSULIN-LIKE GROWTH-FACTOR RECEPTOR GENE-EXPRESSION DURING MATURATION OF THE RAT-BRAIN - COMPARISON WITH INSULIN-LIKE GROWTH FACTOR-I AND FACTOR-II [J].
BONDY, C ;
WERNER, H ;
ROBERTS, CT ;
LEROITH, D .
NEUROSCIENCE, 1992, 46 (04) :909-923
[8]  
BONDY CA, 1993, ANN NY ACAD SCI, V692, P33
[9]   CELLULAR-PATTERN OF INSULIN-LIKE GROWTH FACTOR-I (IGF-I) AND TYPE-I IGF RECEPTOR GENE-EXPRESSION IN EARLY ORGANOGENESIS - COMPARISON WITH IGF-II GENE-EXPRESSION [J].
BONDY, CA ;
WERNER, H ;
ROBERTS, CT ;
LEROITH, D .
MOLECULAR ENDOCRINOLOGY, 1990, 4 (09) :1386-1398
[10]  
BONDY CA, 1991, J NEUROSCI, V11, P3442