Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration

被引:22
作者
Bai, Yixin [1 ]
Zhou, Rui [2 ,3 ]
Cao, Jianyun [4 ]
Wei, Daqing [3 ]
Du, Qing [3 ]
Li, Baoqiang [3 ]
Wang, Yarning [3 ]
Jia, Dechang [3 ]
Zhou, Yu [3 ]
机构
[1] Harbin Med Univ, Dept Dent Med, Harbin 150081, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Harbin Inst Technol, Dept Mat Sci & Engn, Harbin 150001, Peoples R China
[4] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2017年 / 76卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Titanium; Microarc oxidation; Micro-scale gouges; -OH functional group; Osseointegration; TITANIUM SURFACE; BONE INGROWTH; NA; SI; OSTEOCONDUCTIVITY; ABILITY; MATRIX; CA;
D O I
10.1016/j.msec.2017.03.071
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
082905 [生物质能源与材料]; 100103 [病原生物学];
摘要
The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:908 / 917
页数:10
相关论文
共 36 条
[1]   In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone [J].
Ainslie, Kristy M. ;
Tao, Sarah L. ;
Popat, Ketul C. ;
Daniels, Hugh ;
Hardev, Veeral ;
Grimes, Craig A. ;
Desai, Tejal A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 91A (03) :647-655
[2]  
BOBYN JD, 1980, CLIN ORTHOP RELAT R, P263
[3]   Effect of mechanical surface pretreatment on metal ion release [J].
Browne, M ;
Gregson, PJ .
BIOMATERIALS, 2000, 21 (04) :385-392
[4]   Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? [J].
Cai, Kaiyong ;
Bossert, Jorg ;
Jandt, Klaus D. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 49 (02) :136-144
[5]   Metallic implant biomaterials [J].
Chen, Qizhi ;
Thouas, George A. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 87 :1-57
[6]   Cellular chemomechanics at interfaces: sensing, integration and response [J].
Girard, Philippe P. ;
Cavalcanti-Adam, Elisabetta A. ;
Kemkemer, Ralf ;
Spatz, Joachim P. .
SOFT MATTER, 2007, 3 (03) :307-326
[7]   The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation [J].
Gittens, Rolando A. ;
McLachlan, Taylor ;
Olivares-Navarrete, Rene ;
Cai, Ye ;
Berner, Simon ;
Tannenbaum, Rina ;
Schwartz, Zvi ;
Sandhage, Kenneth H. ;
Boyan, Barbara D. .
BIOMATERIALS, 2011, 32 (13) :3395-3403
[8]   Fibroblast adhesion and activation onto micro-machined titanium surfaces [J].
Guillem-Marti, J. ;
Delgado, L. ;
Godoy-Gallardo, M. ;
Pegueroles, M. ;
Herrero, M. ;
Gil, F. J. .
CLINICAL ORAL IMPLANTS RESEARCH, 2013, 24 (07) :770-780
[9]   Membrane of hybrid chitosan-silica xerogel for guided bone regeneration [J].
Lee, Eun-Jung ;
Shin, Du-Sik ;
Kim, Hyoun-Ee ;
Kim, Hae-Won ;
Koh, Young-Hag ;
Jang, Jun-Hyeog .
BIOMATERIALS, 2009, 30 (05) :743-750
[10]   Bone ingrowth in porous titanium implants produced by 3D fiber deposition [J].
Li, Jia Ping ;
Habibovic, Pamela ;
van den Doel, Mirella ;
Wilson, Clayton E. ;
de Wijn, Joost R. ;
van Blitterswijk, Clemens A. ;
de Groot, Klaas .
BIOMATERIALS, 2007, 28 (18) :2810-2820