Update on therapeutic neovascularization

被引:86
作者
Cao, YH [1 ]
Hong, A
Schulten, H
Post, MJ
机构
[1] Karolinska Inst, Lab Angiogenesis Res, Ctr Microbiol & Tumor Biol, S-17177 Stockholm, Sweden
[2] Jinan Univ, Bioengn Inst, Guangzhou 510632, Peoples R China
[3] Maastricht Univ, Dept Physiol, CARIM, Maastricht, Netherlands
关键词
ischemia; neovascularization; angiogenesis; growth factors;
D O I
10.1016/j.cardiores.2004.11.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Therapeutic neovascularization for cardiovascular ischemia is a promising avenue in spite of disappointing early clinical trial results. The concept of three different mechanisms of neovascularization has served to define potential therapeutic targets such as vascular remodeling and stem cell recruitment, but it is anticipated that this will lose significance as the pleiotropic nature of angiogenic cytokines becomes fully understood. With the rapidly growing body of data on growth factors and pro-angiogenic strategies, approaches will emerge that are more effective than the ones that have been tested clinically thus far. Combinations of growth factors, for instance to stabilize vessels, or growth factors combined with cell transplants deserve more attention but Will make the design of preclinical and clinical studies increasingly complex. Recent developments suggest that when using the appropriate dose and treatment regimens, even single growth factor therapy can result in stable and functional vessels. Whether gene therapy or protein therapy will be optimal for this purpose depends mainly on technical developments in vector design and production and on progress in the engineering of slow release matrix formulations for proteins. With the increasing complexity of therapeutic strategies, it remains imperative that these approaches are rationally based on fundamental and preclinical data. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 648
页数:10
相关论文
共 103 条
[1]   cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells [J].
Abe M. ;
Sato Y. .
Angiogenesis, 2001, 4 (4) :289-298
[2]   Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart [J].
Ahmet, I ;
Sawa, Y ;
Yamaguchi, T ;
Matsuda, H .
ANNALS OF THORACIC SURGERY, 2003, 75 (04) :1283-1287
[3]   Vascular endothelial growth factor induces heparin-binding epidermal growth factor-like growth factor in vascular endothelial cells [J].
Arkonac, BM ;
Foster, LC ;
Sibinga, NES ;
Patterson, C ;
Lai, KH ;
Tsai, JC ;
Lee, ME ;
Perrella, MA ;
Haber, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (08) :4400-4405
[4]   Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy [J].
Askari, A ;
Unzek, S ;
Goldman, CK ;
Ellis, SG ;
Thomas, JD ;
DiCorleto, PE ;
Topol, EJ ;
Penn, MS .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2004, 43 (10) :1908-1914
[5]   Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide [J].
Babaei, S ;
Teichert-Kuliszewska, K ;
Zhang, QW ;
Jones, N ;
Dumont, DJ ;
Stewart, DJ .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (06) :1927-1936
[6]   PDGF-BB MODULATES ENDOTHELIAL PROLIFERATION AND ANGIOGENESIS IN-VITRO VIA PDGF BETA-RECEPTORS [J].
BATTEGAY, EJ ;
RUPP, J ;
IRUELAARISPE, L ;
SAGE, EH ;
PECH, M .
JOURNAL OF CELL BIOLOGY, 1994, 125 (04) :917-928
[7]   Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [J].
Benjamin, LE ;
Golijanin, D ;
Itin, A ;
Pode, D ;
Keshet, E .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (02) :159-165
[8]   PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor [J].
Bergsten, E ;
Uutela, M ;
Li, XR ;
Pietras, K ;
Östman, A ;
Heldin, CH ;
Alitalo, K ;
Eriksson, U .
NATURE CELL BIOLOGY, 2001, 3 (05) :512-516
[9]   INDIRECT ANGIOGENIC CYTOKINES UP-REGULATE VEGF AND BFGF GENE-EXPRESSION IN VASCULAR SMOOTH-MUSCLE CELLS, WHEREAS HYPOXIA UP-REGULATES VEGF EXPRESSION ONLY [J].
BROGI, E ;
WU, TG ;
NAMIKI, A ;
ISNER, JM .
CIRCULATION, 1994, 90 (02) :649-652
[10]   Influence of inflammatory cytokines on arteriogenesis [J].
Buschmann, I ;
Heil, M ;
Jost, M ;
Schaper, W .
MICROCIRCULATION, 2003, 10 (3-4) :371-379