Branching annihilating random walk on random regular graphs

被引:15
作者
Szabó, G [1 ]
机构
[1] Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.7474
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The branching annihilating random walk is studied on a random graph whose sites have a uniform number of neighbors (z). The Monte Carlo simulations in agreement with the generalized mean-field analysis indicate that the concentration decreases linearly with the branching rate for z greater than or equal to4, while the coefficient of the linear term becomes zero if z=3. These properties are described by a modified mean-field theory taking explicitly into consideration the probability of mutual annihilation of the parent and its offspring particles using the returning features of a single walker on the same graph.
引用
收藏
页码:7474 / 7477
页数:4
相关论文
共 18 条
[1]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[2]  
BRAMSON M., 1985, Z WAHRSCH VERW GEBIE, V68, P447, DOI [10.1007/BF00535338, DOI 10.1007/BF00535338]
[3]   Inverse Mermin-Wagner theorem for classical spin models on graphs [J].
Burioni, R ;
Cassi, D ;
Vezzani, A .
PHYSICAL REVIEW E, 1999, 60 (02) :1500-1502
[4]   Theory of branching and annihilating random walks [J].
Cardy, J ;
Tauber, UC .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4780-4783
[5]   Field theory of branching and annihilating random walks [J].
Cardy, JL ;
Tauber, UC .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) :1-56
[6]   PHASE-TRANSITIONS AND RANDOM-WALKS ON GRAPHS - A GENERALIZATION OF THE MERMIN-WAGNER THEOREM TO DISORDERED LATTICES, FRACTALS, AND OTHER DISCRETE STRUCTURES [J].
CASSI, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3631-3634
[7]   RANDOM-WALKS ON BETHE LATTICES [J].
CASSI, D .
EUROPHYSICS LETTERS, 1989, 9 (07) :627-631
[8]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[9]   ON PHASE-TRANSITIONS IN SCHLOGL 2ND MODEL [J].
GRASSBERGER, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (04) :365-374
[10]   LOCAL-STRUCTURE THEORY FOR CELLULAR AUTOMATA [J].
GUTOWITZ, HA ;
VICTOR, JD ;
KNIGHT, BW .
PHYSICA D, 1987, 28 (1-2) :18-48