Quantitative bounds on convergence of time-inhomogeneous Markov chains

被引:68
作者
Douc, R
Moulines, E
Rosenthal, JS
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] Ecole Natl Super Telecommun Bretagne, Dept TSI, CNRS, URA 820, F-75634 Paris 13, France
[3] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
关键词
convergence rate; coupling; Markov chain Monte Carlo; simulated annealing; f-total variation;
D O I
10.1214/105051604000000620
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Convergence rates of Markov chains have been widely studied in recent years. In particular, quantitative bounds on convergence rates have been studied in various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101], Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566], Roberts and Tweedie [Stochastic Process. Appl. 80 (1999) 211-229], Jones and Hobert [Statist. Sci. 16 (2001) 312-334] and Fort [Ph.D. thesis (2001) Univ. Paris VI]. In this paper, we extend a result of Rosenthal [J. Amer Statist. Assoc. 90 (1995) 558-566] that concerns quantitative convergence rates for time-homogeneous Markov chains. Our extension allows us to consider f-total variation distance (instead of total variation) and time-inhomogeneous Markov chains. We apply our results to simulated annealing.
引用
收藏
页码:1643 / 1665
页数:23
相关论文
共 20 条
[1]   Convergence of simulated annealing using Foster-Lyapunov criteria [J].
Andrieu, C ;
Breyer, LA ;
Doucet, A .
JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) :975-994
[2]  
Barndorff-Nielsen O. E., 1989, Technical report, DOI [DOI 10.1007/978-1-4899-3424-6, 10.1007/978-1-4899-3424-6]
[3]  
BICKEL P, 2001, UNPUB ERGODICITY CON
[4]  
DOUKHAN P, 1980, CR ACAD SCI A MATH, V290, P921
[5]  
FORT G, 2001, THESIS U PARIS 6
[6]   Stochastic optimization: a review [J].
Fouskakis, D ;
Draper, D .
INTERNATIONAL STATISTICAL REVIEW, 2002, 70 (03) :315-349
[7]   An adaptive Metropolis algorithm [J].
Haario, H ;
Saksman, E ;
Tamminen, J .
BERNOULLI, 2001, 7 (02) :223-242
[8]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
[9]   Honest exploration of intractable probability distributions via Markov chain Monte Carlo [J].
Jones, GL ;
Hobert, JP .
STATISTICAL SCIENCE, 2001, 16 (04) :312-334
[10]  
Locatelli M, 2002, NONCON OPTIM ITS APP, V62, P179