Accurately Modeling Nanosecond Protein Dynamics Requires at least Microseconds of Simulation

被引:51
作者
Bowman, Gregory R. [1 ,2 ]
机构
[1] Washington Univ, Sch Med, Dept Biomed Engn, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Ctr Biol Syst Engn, St Louis, MO 63110 USA
关键词
conformational heterogeneity; molecular dynamics; order parameters; enhanced sampling; force fields; METHYL-GROUP DYNAMICS; MARKOV STATE MODELS; MOLECULAR-DYNAMICS; NMR RELAXATION; FORCE-FIELDS; CONFORMATIONAL ENTROPY; CORRELATED MOTIONS; BACKBONE DYNAMICS; MECHANICS; UBIQUITIN;
D O I
10.1002/jcc.23973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in hardware and algorithms have greatly extended the timescales accessible to molecular simulation. This article assesses whether such long timescale simulations improve our ability to calculate order parameters that describe conformational heterogeneity on ps-ns timescales or if force fields are now a limiting factor. Order parameters from experiment are compared with order parameters calculated in three different ways from simulations ranging from 10 ns to 100 mu s in length. Importantly, bootstrapping is employed to assess the variability in results for each simulation length. The results of 10-100 ns timescale simulations are highly variable, possibly explaining the variation in levels of agreement between simulation and experiment in published works examining different proteins. Fortunately, microsecond timescale simulations improve both the accuracy and precision of calculated order parameters, at least so long as the full exponential fit or truncated average approximation is used instead of the common longtime limit approximation. The improved precision of these long timescale simulations allows a statistically sound comparison of a number of modern force fields, such as Amber03, Amber99sb-ILDN, and Charmm27. While there is some variation between these force fields, they generally give very similar results for sufficiently long simulations. The fact that so much simulation is required to precisely capture ps-ns timescale processes suggests that extremely extensive simulations are required for slower processes. Advanced sampling techniques could aid greatly, however, such methods will need to maintain accurate kinetics if they are to be of value for calculating dynamical properties like order parameters. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:558 / 566
页数:9
相关论文
共 65 条
[1]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[2]   Discovery of multiple hidden allosteric sites by combining Markov state models and experiments [J].
Bowman, Gregory R. ;
Bolin, Eric R. ;
Hart, Kathryn M. ;
Maguire, Brendan C. ;
Marqusee, Susan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (09) :2734-2739
[3]   Extensive Conformational Heterogeneity within Protein Cores [J].
Bowman, Gregory R. ;
Geissler, Phillip L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (24) :6417-6423
[4]   Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites [J].
Bowman, Gregory R. ;
Geissler, Phillip L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11681-11686
[5]   Atomistic Folding Simulations of the Five-Helix Bundle Protein λ6-85 [J].
Bowman, Gregory R. ;
Voelz, Vincent A. ;
Pande, Vijay S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (04) :664-667
[6]   Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models [J].
Bowman, Gregory R. ;
Ensign, Daniel L. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :787-794
[7]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[8]   Calculations of NMR dipolar coupling strengths in model peptides [J].
Case, DA .
JOURNAL OF BIOMOLECULAR NMR, 1999, 15 (02) :95-102
[9]   Molecular dynamics of staphylococcal nuclease:: Comparison of simulation with 15N and 13C NMR relaxation data [J].
Chatfield, DC ;
Szabo, A ;
Brooks, BR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (21) :5301-5311
[10]   Model-free analysis of protein dynamics: assessment of accuracy and model selection protocols based on molecular dynamics simulation [J].
Chen, JH ;
Brooks, CL ;
Wright, PE .
JOURNAL OF BIOMOLECULAR NMR, 2004, 29 (03) :243-257