Rapamycin inhibits E2F-dependent expression of minichromosome maintenance proteins in vascular smooth muscle cells

被引:25
作者
Bruemmer, D
Yin, F
Liu, J
Kiyono, T
Fleck, E
Van Herle, AJ
Law, RE [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Div Endocrinol Diabet & Hypertens, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Gonda Goldschmied Diabet Ctr, Los Angeles, CA 90095 USA
[3] German Heart Inst, Dept Med Cardiol, D-13353 Berlin, Germany
[4] Natl Canc Ctr, Res Inst, Div Virol, Tokyo 1040045, Japan
关键词
rapamycin; restenosis; vascular smooth muscle cells; minichromosome maintenance proteins; DNA replication; E2F;
D O I
10.1016/S0006-291X(03)00343-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapamycin inhibits vascular smooth muscle cell (VSMC) proliferation and rapamycin-eluting stents represent a novel therapeutic strategy for preventing postangioplasty restenosis. The precise molecular mechanism, for rapamycin-mediated inhibition of VSMC cell cycle progression and DNA replication remain to be elucidated. Minichromosome maintenance proteins (MCM) are essential regulators of DNA replication and the objective of this study was to examine the effect of rapamycin on their expression in rat aortic VSMC. Rapamycin substantially inhibited mitogen-induced MCM6 and MCM7 mRNA and protein expression in a dose-dependent fashion. Transient transfection experiments revealed that rapamycin inhibited MCM6 and MCM7 promoter activity, implicating a transcriptional mechanism. MCM6 and MCM7 transcriptional activation is regulated by E2F and activity of a luciferase reporter plasmid driven by four E2F elements was also significantly inhibited by rapamycin. The inhibitory effect of rapamycin on MCM6 and MCM7 was reversed by overexpression of E2F, indicating that their downregulation by rapamycin involves an E2F-dependent mechanism. These observations suggest that rapamycin inhibits MCM6 and MCM7 expression by blocking their E2F-dependent transactivation which may contribute importantly to the inhibition of VSMC DNA synthesis by rapamycin. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 40 条
[1]   Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo [J].
Agah, R ;
Kirshenbaum, LA ;
Abdellatif, M ;
Truong, LD ;
Chakraborty, S ;
Michael, LH ;
Schneider, MD .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (11) :2722-2728
[2]   Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication [J].
Aparicio, OM ;
Stout, AM ;
Bell, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9130-9135
[3]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[4]   A ROLE FOR THE NUCLEAR-ENVELOPE IN CONTROLLING DNA-REPLICATION WITHIN THE CELL-CYCLE [J].
BLOW, JJ ;
LASKEY, RA .
NATURE, 1988, 332 (6164) :546-548
[5]   Cell cycle progression - New therapeutic target for vascular proliferative disease [J].
Braun-Dullaeus, RC ;
Mann, MJ ;
Dzau, VJ .
CIRCULATION, 1998, 98 (01) :82-89
[6]   Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin [J].
Braun-Dullaeus, RC ;
Mann, MJ ;
Seay, U ;
Zhang, LN ;
von der Leyen, HE ;
Morris, RE ;
Dzau, VJ .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2001, 21 (07) :1152-1158
[7]  
Brennan P, 1999, MOL CELL BIOL, V19, P4729
[8]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[9]   Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin [J].
Burke, SE ;
Lubbers, NL ;
Chen, YW ;
Hsieh, GC ;
Mollison, KW ;
Luly, JR ;
Wegner, CD .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 1999, 33 (06) :829-835
[10]   The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts [J].
Coleman, TR ;
Carpenter, PB ;
Dunphy, WG .
CELL, 1996, 87 (01) :53-63