Role of oxidants in ischemic brain damage

被引:953
作者
Chan, PH
机构
[1] UNIV CALIF SAN FRANCISCO,SCH MED,DEPT NEUROL SURG,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,SCH MED,DEPT NEUROL,SAN FRANCISCO,CA 94143
关键词
cerebral ischemia; free radicals; oxidants reperfusion; superoxide dismutase; mice; transgenic mice; knockout;
D O I
10.1161/01.STR.27.6.1124
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose Oxygen free radicals or oxidants have been proposed to be involved in acute central nervous system injury that is produced by cerebral ischemia and reperfusion. Because of the transient nature of oxygen radicals and the technical difficulties inherent in accurately measuring their levels in the brain, experimental strategies have been focused on the use of pharmacological agents and antioxidants to seek a correlation between the exogenously supplied specific radical scavengers (ie, superoxide dismutase and catalase) and the subsequent protection of cerebral tissues from ischemic injury. However, this strategy entails problems (hemodynamic, pharmacokinetic, toxicity, blood-brain barrier permeability, etc) that may cloud the data interpretation. This mini-review will focus on the oxidant mechanisms in cerebral ischemic brain injury by using transgenic and knockout mice as an alternative approach. Methods Transgenic and knockout mutants that either overexpress or are deficient in antioxidant enzyme/protein levels have been successfully produced. The availability of these genetically modified animals has made it possible to investigate the role of certain oxidants in ischemic brain cell damage in molecular fashion. Results It has been shown that an increased level of CuZn-superoxide dismutase and antiapoptotic protein Bcl-2 in the brains of transgenic mice protects neurons from ischemic/reperfusion injury, whereas a deficiency in CuZn-superoxide dismutase or mitochondrial Mn-superoxide dismutase exacerbates ischemic brain damage. Target disruption of neuronal nitric oxide synthase in mice also provides neuronal protection against permanent and transient focal cerebral ischemia. Conclusions I conclude that molecular genetic approaches in modifying antioxidant levels in the brain offer a unique tool for understanding the role of oxidants in ischemic brain damage.
引用
收藏
页码:1124 / 1129
页数:6
相关论文
共 56 条
[1]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[2]   ALS, SOD AND PEROXYNITRITE [J].
BECKMAN, JS ;
CARSON, M ;
SMITH, CD ;
KOPPENOL, WH .
NATURE, 1993, 364 (6438) :584-584
[3]  
Bindokas VP, 1996, J NEUROSCI, V16, P1324
[4]   MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE - GENERAL PROPERTIES AND EFFECT OF HYPERBARIC-OXYGEN [J].
BOVERIS, A ;
CHANCE, B .
BIOCHEMICAL JOURNAL, 1973, 134 (03) :707-716
[5]  
CHAN PH, 1993, PROG BRAIN RES, V96, P97
[6]   BRAIN INFARCTION IS NOT REDUCED IN SOD-1 TRANSGENIC MICE AFTER A PERMANENT FOCAL CEREBRAL-ISCHEMIA [J].
CHAN, PH ;
KAMII, H ;
YANG, GY ;
GAFNI, J ;
EPSTEIN, CJ ;
CARLSON, E ;
REOLA, L .
NEUROREPORT, 1993, 5 (03) :293-296
[7]   PROTECTIVE EFFECTS OF LIPOSOME-ENTRAPPED SUPEROXIDE-DISMUTASE ON POSTTRAUMATIC BRAIN EDEMA [J].
CHAN, PH ;
LONGAR, S ;
FISHMAN, RA .
ANNALS OF NEUROLOGY, 1987, 21 (06) :540-547
[8]  
CHAN PH, 1994, BRAIN PATHOL, V4, P59
[9]   BCL-2 IS EXPRESSED IN NEURONS THAT SURVIVE FOCAL ISCHEMIA IN THE RAT [J].
CHEN, J ;
GRAHAM, SH ;
CHAN, PH ;
LAN, JQ ;
ZHOU, RL ;
SIMON, RP .
NEUROREPORT, 1995, 6 (02) :394-398
[10]   ATTENUATION OF P53 EXPRESSION PROTECTS AGAINST FOCAL ISCHEMIC DAMAGE IN TRANSGENIC MICE [J].
CRUMRINE, RC ;
THOMAS, AL ;
MORGAN, PF .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1994, 14 (06) :887-891