Selection of Alternative CYP3A4 Probe Substrates for Clinical Drug Interaction Studies Using In Vitro Data and In Vivo Simulation

被引:101
作者
Foti, Robert S. [1 ]
Rock, Dan A. [1 ]
Wienkers, Larry C. [1 ]
Wahlstrom, Jan L. [1 ]
机构
[1] Amgen Inc, Pharmacokinet & Drug Metab, Seattle, WA 98119 USA
关键词
CYTOCHROME-P450 INHIBITION DATA; PREDICTION; METABOLISM; IMPACT; TESTOSTERONE; DISCOVERY; MIDAZOLAM; PROFILES;
D O I
10.1124/dmd.110.032094
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Understanding the potential for cytochrome P450-mediated drug-drug interactions (DDIs) is a critical step in the drug discovery process. DDIs of CYP3A4 are of particular importance because of the number of marketed drugs that are cleared by this enzyme. In response to studies that suggested the presence of several binding regions within the CYP3A4 active site, multiple probe substrates are often used for in vitro CYP3A4 DDI studies, including midazolam (the clinical standard), felodipine/nifedipine, and testosterone. However, the design of clinical CYP3A4 DDI studies may be confounded for cases such as 1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458), with which testosterone is predicted to exhibit a clinically relevant DDI whereas midazolam and felodipine/nifedipine are not. To develop an appropriate path forward for such clinical DDI studies, the inhibition potency of 20 known inhibitors of CYP3A4 were measured in vitro using 8 clinically relevant CYP3A4 probe substrates and testosterone. Hierarchical clustering suggested four probe substrate clusters: testosterone; felodipine; midazolam, buspirone, quinidine, and sildenafil; and simvastatin, budesonide, and fluticasone. The in vivo sensitivities of six clinically relevant CYP3A4 probe substrates ( buspirone, cyclosporine, nifedipine, quinidine, sildenafil, and simvastatin) were determined in relation to midazolam from literature DDI data. Buspirone, sildenafil, and simvastatin exhibited similar or greater sensitivity than midazolam to CYP3A4 inhibition in vivo. Finally, Simcyp was used to predict the in vivo magnitude of CYP3A4 DDIs caused by AMG 458 using midazolam, sildenafil, simvastatin, and testosterone as probe substrates.
引用
收藏
页码:981 / 987
页数:7
相关论文
共 25 条
[1]   Comparison of midazolam and simvastatin as cytochromc P450 3A probes [J].
Chung, E ;
Nafziger, AN ;
Kazierad, DJ ;
Bertino, JS .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2006, 79 (04) :350-361
[2]  
Davidson Michael H, 2002, Expert Opin Drug Saf, V1, P207, DOI 10.1517/14740338.1.3.207
[3]   CYP2C19 inhibition: The impact of substrate probe selection on in vitro inhibition profiles [J].
Foti, Robert S. ;
Wahlstrom, Jan L. .
DRUG METABOLISM AND DISPOSITION, 2008, 36 (03) :523-528
[4]   Effects of uptake and efflux transporter inhibition on erythromycin breath test results [J].
Frassetto, L. A. ;
Poon, S. ;
Tsourounis, C. ;
Valera, C. ;
Benet, L. Z. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2007, 81 (06) :828-832
[5]   CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions [J].
Galetin, A ;
Ito, K ;
Hallifax, D ;
Houston, JB .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2005, 314 (01) :180-190
[6]  
Galetin A, 2008, EXPERT OPIN DRUG MET, V4, P909, DOI [10.1517/17425255.4.7.909, 10.1517/17425255.4.7.909 ]
[7]   Drug interaction studies: Study design, data analysis, and implications for dosing and labeling [J].
Huang, S-M ;
Temple, R. ;
Throckmorton, D. C. ;
Lesko, L. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2007, 81 (02) :298-304
[8]   Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm [J].
Ito, K ;
Hallifax, D ;
Obach, RS ;
Houston, JB .
DRUG METABOLISM AND DISPOSITION, 2005, 33 (06) :837-844
[9]   Itraconazole greatly increases plasma concentrations and effects of felodipine [J].
Jalava, KM ;
Olkkola, KT ;
Neuvonen, PJ .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 1997, 61 (04) :410-415
[10]  
Jorga A, 2004, TRANSPL P, V36, p396S, DOI 10.1016/j.transproceed.2004.01.013