2-D companding for noise reduction in strain imaging

被引:197
作者
Chaturvedi, P [1 ]
Insana, MF [1 ]
Hall, TJ [1 ]
机构
[1] Univ Kansas, Med Ctr, Dept Radiol, Kansas City, KS 66160 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1109/58.646923
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Companding is a signal preprocessing technique for improving the precision of correlation-based time delay measurements. In strain imaging, companding is applied to warp 2-D or 3-D ultrasonic echo fields to improve coherence between data acquired before and after compression. It minimizes decorrelation errors, which are the dominant source of strain image noise. The word refers to a spatially variable signal scaling that compresses and expands waveforms acquired in an ultrasonic scan plane or volume. Temporal stretching by the applied strain is a single-scale (global), 1-D companding process that has been used successfully to reduce strain noise. This paper describes a two-scale (global and local), 2-D companding technique that is based on a sum-absolute-difference (SAD) algorithm for blood velocity estimation. Several experiments are presented that demonstrate improvements in target visibility for strain imaging. The results show that, if tissue motion can be confined to the scan plane of a linear array transducer, displacement variance can be reduced two orders of magnitude using 2-D local companding relative to temporal stretching.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 39 条
[1]   CORRELATOR COMPENSATION REQUIREMENTS FOR PASSIVE TIME-DELAY ESTIMATION WITH MOVING SOURCE OR RECEIVERS [J].
ADAMS, WB ;
KUHN, JP ;
WHYLAND, WP .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (02) :158-168
[2]   Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: Applications to elastography [J].
Alam, SK ;
Ophir, J .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1997, 23 (01) :95-105
[3]   EFFECTS OF UNCOMPENSATED RELATIVE-TIME COMPANDING ON A BROAD-BAND CROSS CORRELATOR [J].
BETZ, JW .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (03) :505-510
[4]   COMPARISON OF THE DESKEWED SHORT-TIME CORRELATOR AND THE MAXIMUM-LIKELIHOOD CORRELATOR [J].
BETZ, JW .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (02) :285-294
[5]   Deformation models and correlation analysis in elastography [J].
Bilgen, M ;
Insana, MF .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (05) :3212-3224
[6]   Error analysis in acoustic elastography .1. Displacement estimation [J].
Bilgen, M ;
Insana, MF .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (02) :1139-1146
[7]   A NOVEL METHOD FOR ANGLE INDEPENDENT ULTRASONIC-IMAGING OF BLOOD-FLOW AND TISSUE MOTION [J].
BOHS, LN ;
TRAHEY, GE .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1991, 38 (03) :280-286
[8]   A REAL-TIME SYSTEM FOR QUANTIFYING AND DISPLAYING 2-DIMENSIONAL VELOCITIES USING ULTRASOUND [J].
BOHS, LN ;
FRIEMEL, BH ;
MCDERMOTT, BA ;
TRAHEY, GE .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1993, 19 (09) :751-761
[9]   METHODS FOR ESTIMATION OF SUBSAMPLE TIME DELAYS OF DIGITIZED ECHO SIGNALS [J].
CESPEDES, I ;
HUANG, Y ;
OPHIR, J ;
SPRATT, S .
ULTRASONIC IMAGING, 1995, 17 (02) :142-171
[10]   REDUCTION OF IMAGE NOISE IN ELASTOGRAPHY [J].
CESPEDES, I ;
OPHIR, J .
ULTRASONIC IMAGING, 1993, 15 (02) :89-102