Application of feature extractive algorithm to bankruptcy prediction

被引:4
作者
Charalambous, C [1 ]
Charitou, A [1 ]
Kaourou, F [1 ]
机构
[1] Univ Cyprus, Dept Business Adm, CY-1678 Nicosia, Cyprus
来源
IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL V | 2000年
关键词
D O I
10.1109/IJCNN.2000.861479
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study uses the feature selection algorithm proposed by Setiono and Liu to select the most relevant features for the bankruptcy prediction problem. The method uses a feedforward neural network with one hidden layer to decide which features to be removed. Our data consists of 139 matched pair of bankrupt and nonbankrupt U.S. firms for the period 1983-1994. The results of this study indicate that the final neural network obtained with reduced number of inputs gives significantly better prediction results than the one that uses all initial features.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 20 条
[1]  
*CFFO2N, DUMM CASH FLOW OP, V1
[2]  
*CFFOSL, CASH FLOW OP SAL, V2
[3]  
*CHECL, CASH EQ CURR LIAB, V5
[4]  
*CLTA, CURR LIAB TOT ASS, V7
[5]  
*DER, DEBT DUE 1 YEAR PLUS, V9
[6]  
*EBITA, EARN INT TAX, V11
[7]  
*LTAM, LONG TERM ACCR MARK, V13
[8]  
*OPNI2N, DUMM OP INC 1 NEG LA
[9]  
*OPNILT, OP INC TOT LIAB
[10]  
*OPNIM, OP INC MARK VAL EQ F