The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores

被引:110
作者
Brady, Nathan R.
Hamacher-Brady, Anne
Yuan, Hua
Gottlieb, Roberta A.
机构
[1] San Diego State Univ, Biosci Ctr, San Diego, CA 92182 USA
[2] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA USA
关键词
autophagy; Bcl-2; Beclin; 1; HL-1 cardiac myocyte; GFP-LC3;
D O I
10.1111/j.1742-4658.2007.05849.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macroautophagy is a vital process in the cardiac myocyte: it plays a protective role in the response to ischemic injury, and chronic perturbation is causative in heart disease. Recent findings evidence a link between the apoptotic and autophagic pathways through the interaction of the antiapoptotic proteins Bcl-2 and Bcl-X-L with Beclin 1. However, the nature of the interaction, either in promoting or blocking autophagy, remains unclear. Here, using a highly sensitive, macroautophagy-specific flux assay allowing for the distinction between enhanced autophagosome production and suppressed autophagosome degradation, we investigated the control of Beclin 1 and Bcl-2 on nutrient deprivation-activated macroautophagy. We found that in HL-1 cardiac myocytes the relationship between Beclin 1 and Bcl-2 is subtle: Beclin 1 mutant lacking the Bcl-2-binding domain significantly reduced autophagic activity, indicating that Beclin 1-mediated autophagy required an interaction with Bcl-2. Overexpression of Bcl-2 had no effect on the autophagic response to nutrient deprivation; however, targeting Bcl-2 to the sarco/endoplasmic reticulum (S/ER) significantly suppressed autophagy. The suppressive effect of S/ER-targeted Bcl-2 was in part due to the depletion of S/ER calcium stores. Intracellular scavenging of calcium by BAPTA-AM significantly blocked autophagy, and thapsigargin, an inhibitor of sarco/endoplasmic reticulum calcium ATPase, reduced autophagic activity by similar to 50%. In cells expressing Bcl-2-ER, thapsigargin maximally reduced autophagic flux. Thus, our results demonstrate that Bcl-2 negatively regulated the autophagic response at the level of S/ER calcium content rather than via direct interaction with Beclin 1. Moreover, we identify calcium homeostasis as an essential component of the autophagic response to nutrient deprivation.
引用
收藏
页码:3184 / 3197
页数:14
相关论文
共 67 条
[1]   A simple estimation of peroxisomal degradation with green fluorescent protein - an application for cell cycle analysis [J].
Arai, K ;
Ohkuma, S ;
Matsukawa, T ;
Kato, S .
FEBS LETTERS, 2001, 507 (02) :181-186
[2]   The dynamics of autophagy visualized in live cells - From autophagosome formation to fusion with endo/lysosomes [J].
Bampton, Edward T. W. ;
Goemans, Christoph G. ;
Niranjan, Dhevahi ;
Mizushima, Noboru ;
Tolkovsky, Aviva M. .
AUTOPHAGY, 2005, 1 (01) :23-36
[3]   Altered cardiac calcium handling in diabetes [J].
Belke, DD ;
Dillmann, WH .
CURRENT HYPERTENSION REPORTS, 2004, 6 (06) :424-429
[4]   EC-coupling in normal and failing hearts [J].
Birkeland, JA ;
Sejersted, OM ;
Taraldsen, T ;
Sjaastad, I .
SCANDINAVIAN CARDIOVASCULAR JOURNAL, 2005, 39 (1-2) :13-23
[5]   Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors [J].
Brady, Nathan R. ;
Hamacher-Brady, Anne ;
Gottlieb, Roberta A. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6) :667-678
[6]  
Brocheriou V, 2000, J GENE MED, V2, P326, DOI 10.1002/1521-2254(200009/10)2:5<326::AID-JGM133>3.0.CO
[7]  
2-1
[8]   Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region [J].
Chami, M ;
Prandini, A ;
Campanella, M ;
Pinton, P ;
Szabadkai, G ;
Reed, JC ;
Rizzuto, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (52) :54581-54589
[9]   Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice [J].
Chen, ZY ;
Chua, CC ;
Ho, YS ;
Hamdy, RC ;
Chua, BHL .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2001, 280 (05) :H2313-H2320
[10]   HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte [J].
Claycomb, WC ;
Lanson, NA ;
Stallworth, BS ;
Egeland, DB ;
Delcarpio, JB ;
Bahinski, A ;
Izzo, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2979-2984