Experimental validation of molecular dynamics simulations of lipid bilayers:: A new approach

被引:148
作者
Benz, RW
Castro-Román, F
Tobias, DJ [1 ]
White, SH
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA
关键词
D O I
10.1529/biophysj.104.046821
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A novel protocol has been developed for comparing the structural properties of lipid bilayers determined by simulation with those determined by diffraction experiments, which makes it possible to test critically the ability of molecular dynamics simulations to reproduce experimental data. This model-independent method consists of analyzing data from molecular dynamics bilayer simulations in the same way as experimental data by determining the structure factors of the system and, via Fourier reconstruction, the overall transbilayer scattering-density profiles. Multi-nanosecond molecular dynamics simulations of a dioleoylphosphatidylcholine bilayer at 66% RH (5.4 waters/lipid) were performed in the constant pressure and temperature ensemble using the united-atom GROMACS and the all-atom CHARMM22/27 force fields with the GROMACS and NAMD software packages, respectively. The quality of the simulated bilayer structures was evaluated by comparing simulation with experimental results for bilayer thickness, area/lipid, individual molecular-component distributions, continuous and discrete structure factors, and overall scattering-density profiles. Neither the GROMACS nor the CHARMM22/27 simulations reproduced experimental data within experimental error. The widths of the simulated terminal methyl distributions showed a particularly strong disagreement with the experimentally observed distributions. A comparison of the older CHARMM22 with the newer CHARMM27 force fields shows that significant progress is being made in the development of atomic force fields for describing lipid bilayer systems empirically.
引用
收藏
页码:805 / 817
页数:13
相关论文
共 44 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[5]   Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers [J].
Chiu, SW ;
Jakobsson, E ;
Subramaniam, S ;
Scott, HL .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2462-2469
[6]   X-RAY SCATTERING FACTORS COMPUTED FROM NUMERICAL HARTREE-FOCK WAVE FUNCTIONS [J].
CROMER, DT ;
MANN, JB .
ACTA CRYSTALLOGRAPHICA SECTION A-CRYSTAL PHYSICS DIFFRACTION THEORETICAL AND GENERAL CRYSTALLOGRAPHY, 1968, A 24 :321-&
[7]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[8]   On simulating lipid bilayers with an applied surface tension: Periodic boundary conditions and undulations [J].
Feller, SE ;
Pastor, RW .
BIOPHYSICAL JOURNAL, 1996, 71 (03) :1350-1355
[9]   An improved empirical potential energy function for molecular simulations of phospholipids [J].
Feller, SE ;
MacKerell, AD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (31) :7510-7515
[10]   CONSTANT-PRESSURE MOLECULAR-DYNAMICS SIMULATION - THE LANGEVIN PISTON METHOD [J].
FELLER, SE ;
ZHANG, YH ;
PASTOR, RW ;
BROOKS, BR .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (11) :4613-4621