P values for composite null models

被引:266
作者
Bayarri, MJ [1 ]
Berger, JO
机构
[1] Univ Valencia, Dept Stat & OR, E-46100 Valencia, Spain
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
关键词
Bayes factors; Bayesian p values; conditioning; model checking; predictive distributions;
D O I
10.2307/2669749
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of investigating compatibility of an assumed model with the data is investigated in the situation when the assumed model has unknown parameters. The most frequently used measures of compatibility are p values, based on statistics T for which large values are deemed to indicate incompatibility of the data and the model. When the null model has unknown parameters. ?, values are not uniquely defined. The proposals for computing a p value in such a situation include the plug-in and similar p values on the frequentist side, and the predictive and posterior predictive p values on the Bayesian side. We propose two alternatives, the conditional predictive p value and the partial posterior predictive p value, and indicate their advantages from both Bayesian and frequentist perspectives.
引用
收藏
页码:1127 / 1142
页数:16
相关论文
共 34 条
[1]  
Agresti A., 1992, STAT SCI, V7, P131, DOI DOI 10.1214/SS/1177011454
[2]  
AITKIN M, 1991, J ROY STAT SOC B MET, V53, P111
[3]  
[Anonymous], 1987, Statistical Science
[4]  
Bayarri MJ, 1999, BAYESIAN STATISTICS 6, P53
[5]  
BAYARRI MJ, 1997, 9746 ISDA DUK U
[6]  
Berger JO, 1997, STAT SCI, V12, P133
[7]  
BERGER JO, 1987, J AM STAT ASSOC, V82, P112, DOI 10.2307/2289131
[8]   A UNIFIED CONDITIONAL FREQUENTIST AND BAYESIAN TEST FOR FIXED AND SEQUENTIAL SIMPLE HYPOTHESIS-TESTING [J].
BERGER, JO ;
BROWN, LD ;
WOLPERT, RL .
ANNALS OF STATISTICS, 1994, 22 (04) :1787-1807
[9]   P-VALUES MAXIMIZED OVER A CONFIDENCE SET FOR THE NUISANCE PARAMETER [J].
BERGER, RL ;
BOOS, DD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (427) :1012-1016
[10]   ESTIMATING STATISTICAL HYPOTHESES [J].
BLYTH, CR ;
STAUDTE, RG .
STATISTICS & PROBABILITY LETTERS, 1995, 23 (01) :45-52