Suppression of tumor growth through disruption of hypoxia-inducible transcription

被引:452
作者
Kung, AL
Wang, S
Klco, JM
Kaelin, WG
Livingston, DM [1 ]
机构
[1] Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1038/82146
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chronic hypoxia, a hallmark of many tumors, is associated with angiogenesis and tumor progression. Strategies to treat tumors have been developed in which tumor cells are targeted with drugs or gene-therapy vectors specifically activated under hypoxic conditions. Here we report a different approach, in which the normal transcriptional response to hypoxia is selectively disrupted. Our data indicate that specific blockade of the interaction of hypoxia-inducible factor with the CH1 domain of its p300 and CREB binding protein transcriptional coactivators leads to attenuation of hypoxia-inducible gene expression and diminution of tumor growth. Thus, disrupting the normal co-activational response to hypoxia may be a new and useful therapeutic strategy.
引用
收藏
页码:1335 / 1340
页数:6
相关论文
共 44 条
[1]   An essential role for p300/CBP in the cellular response to hypoxia [J].
Arany, Z ;
Huang, LE ;
Eckner, R ;
Bhattacharya, S ;
Jiang, C ;
Goldberg, MA ;
Bunn, HF ;
Livingston, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12969-12973
[2]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[3]   Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1 [J].
Bhattacharya, S ;
Michels, CL ;
Leung, MK ;
Arany, ZP ;
Kung, AL ;
Livingston, DM .
GENES & DEVELOPMENT, 1999, 13 (01) :64-75
[4]   Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha [J].
Bhattacharya, S ;
Eckner, R ;
Grossman, S ;
Oldread, E ;
Arany, Z ;
DAndrea, A ;
Livingston, DM .
NATURE, 1996, 383 (6598) :344-347
[5]   An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer [J].
Binley, K ;
Iqball, S ;
Kingsman, A ;
Kingsman, S ;
Naylor, S .
GENE THERAPY, 1999, 6 (10) :1721-1727
[6]  
Brizel DM, 1996, CANCER RES, V56, P941
[7]   Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies [J].
Brown, JM .
MOLECULAR MEDICINE TODAY, 2000, 6 (04) :157-162
[8]   Role of HIF-1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [J].
Carmeliet, P ;
Dor, Y ;
Herbert, JM ;
Fukumura, D ;
Brusselmans, K ;
Dewerchin, M ;
Neeman, M ;
Bono, F ;
Abramovitch, R ;
Maxwell, P ;
Koch, CJ ;
Ratcliffe, P ;
Moons, L ;
Jain, RK ;
Collen, D ;
Keshet, E .
NATURE, 1998, 394 (6692) :485-490
[9]   Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α [J].
Carrero, P ;
Okamoto, K ;
Coumailleau, P ;
O'Brien, S ;
Tanaka, H ;
Poellinger, L .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (01) :402-415
[10]   Role of CBP/P300 in nuclear receptor signalling [J].
Chakravarti, D ;
LaMorte, VJ ;
Nelson, MC ;
Nakajima, T ;
Schulman, IG ;
Juguilon, H ;
Montminy, M ;
Evans, RM .
NATURE, 1996, 383 (6595) :99-103