Linearized chord diagrams and an upper bound for Vassiliev invariants

被引:10
作者
Bollobás, B [1 ]
Riordan, O
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
关键词
D O I
10.1142/S0218216500000475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Stoimenow [J. Knot Th. Ram. 7 (1998), 93-114] gave an upper bound on the dimension d(n) of the space of order n Vassiliev knot invariants, by considering chord diagrams of a certain type. We present a simpler argument which gives a better bound on the number of these chord diagrams, and hence on d(n).
引用
收藏
页码:847 / 853
页数:7
相关论文
共 5 条
[1]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[2]  
Chmutov S.V., 1994, J KNOT THEOR RAMIF, V3, P141
[3]  
Kontsevich M., 1993, ADV SOVIET MATH 2, V16, P137
[4]   STIRLING NUMBERS OF THE 2ND KIND [J].
MOSER, L ;
WYMAN, M .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) :29-43
[5]   Enumeration of chord diagrams and an upper bound for Vassiliev invariants [J].
Stoimenow, A .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (01) :93-114