Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 32 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[3]  
[Anonymous], 1985, Computational Statistics Quarterly, DOI DOI 10.1155/2010/874592
[4]  
[Anonymous], 1987, SIMULATED ANNEALING
[5]  
Bernardo J. M., 1995, BAYESIAN THEORY
[6]   Simulation-based methods for blind maximum-likelihood filter identification [J].
Cappé, O ;
Doucet, A ;
Lavielle, M ;
Moulines, E .
SIGNAL PROCESSING, 1999, 73 (1-2) :3-25
[7]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[8]   BLIND RESTORATION OF LINEARLY DEGRADED DISCRETE SIGNALS BY GIBBS SAMPLING [J].
CHEN, R ;
LI, TH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2410-2413
[9]   BAYES REGRESSION WITH AUTOREGRESSIVE ERRORS - A GIBBS SAMPLING APPROACH [J].
CHIB, S .
JOURNAL OF ECONOMETRICS, 1993, 58 (03) :275-294
[10]   Calculating posterior distributions and modal estimates in Markov mixture models [J].
Chib, S .
JOURNAL OF ECONOMETRICS, 1996, 75 (01) :79-97