Supermodular dependence ordering on a class of multivariate copulas

被引:31
作者
Wei, G
Hu, TH
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, Anhua 230026, Peoples R China
关键词
multivariate distribution; extreme value copula; extreme value limit; supermodular dependence ordering; concordance ordering; Laplace transform;
D O I
10.1016/S0167-7152(02)00094-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In most situations, the dependence monotonicities of copulas are checked by problem-specific approaches. Sometimes, it is impossible to check the monotonicities from the analytic forms of copulas. The purpose of this paper is to lay out some general results that can be used to identify dependence parameter(s) with respect to the supermodular dependence ordering for a parametric family of copulas constructed through mixing and limits. Special attention is paid to multivariate extreme value copulas, and some examples of applications are provided. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 21 条
[1]  
B?uerle N., 1997, COMMUN STAT STOCHAST, V13, P181
[2]  
B├a┬nuerle N., 1998, ASTIN BULL, V28, P59, DOI 10.2143/AST.28.1.519079
[3]   Comparison results for Markov-modulated recursive models [J].
Bauerle, N ;
Rieder, U .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 1997, 11 (02) :203-217
[4]  
Benes V., 1997, DISTRIBUTIONS GIVEN
[5]  
Dall'aglio G., 1991, ADV PROBABILITY DIST
[6]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[7]   Supermodular ordering and stochastic annuities [J].
Goovaerts, MJ ;
Dhaene, J .
INSURANCE MATHEMATICS & ECONOMICS, 1999, 24 (03) :281-290
[8]   Comparisons of dependence for stationary Markov processes [J].
Hu, TZ ;
Pan, XM .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2000, 14 (03) :299-315
[9]   MULTIVARIATE CONCORDANCE [J].
JOE, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 35 (01) :12-30
[10]   FAMILIES OF MIN-STABLE MULTIVARIATE EXPONENTIAL AND MULTIVARIATE EXTREME VALUE DISTRIBUTIONS [J].
JOE, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (01) :75-81