Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis

被引:313
作者
Bailey, JA
Carrel, L
Chakravarti, A
Eichler, EE
机构
[1] Case Western Reserve Univ, Sch Med, Dept Genet, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Sch Med, Ctr Human Genet, Cleveland, OH 44106 USA
[3] Univ Hosp Cleveland, Cleveland, OH 44106 USA
关键词
D O I
10.1073/pnas.97.12.6634
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
X inactivation is a chromosome-specific form of genetic regulation in which thousands of genes on one homologue become silenced early in female embryogenesis, Although many aspects of X inactivation are now understood, the spread of the X inactivation signal along the entire length of the chromosome remains enigmatic. Extending the Gartler-Riggs model [Gartler, S, M, & Riggs, A. D, (1983) Annu, Rev. Genet 17, 155-190], Lyon recently proposed [Lyon, M, F, (1998) Cytogenet Cell Genet, 80, 133-137] that a nonrandom organization of long interspersed element (LINE) repetitive sequences on the X chromosome might be responsible for its facultative heterochromatization. In this paper, we present data indicating that the LINE-1 (L1) composition of the human X chromosome is fundamentally distinct from that of human autosomes, The X chromosome is enriched 2-fold for L1 repetitive elements, with the greatest enrichment observed for a restricted subset of LINE-1 elements that were active <100 million years ago. Regional analysis of the X chromosome reveals that the most significant clustering of these elements is in Xq13-Xq21 (the center of X inactivation). Genomic segments harboring genes that escape inactivation are significantly reduced in L1 content compared with X chromosome segments containing genes subject to X inactivation, providing further support for the association between X inactivation and L1 content. These nonrandom properties of L1 distribution on the X chromosome provide strong evidence that L1 elements may serve as DNA signals to propagate X inactivation along the chromosome.
引用
收藏
页码:6634 / 6639
页数:6
相关论文
共 43 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]  
BERNARDI G, 1993, MOL BIOL EVOL, V10, P186
[3]   CHARACTERIZATION OF A MURINE GENE EXPRESSED FROM THE INACTIVE X-CHROMOSOME [J].
BORSANI, G ;
TONLORENZI, R ;
SIMMLER, MC ;
DANDOLO, L ;
ARNAUD, D ;
CAPRA, V ;
GROMPE, M ;
PIZZUTI, A ;
MUZNY, D ;
LAWRENCE, C ;
WILLARD, HF ;
AVNER, P ;
BALLABIO, A .
NATURE, 1991, 351 (6324) :325-329
[4]   DIFFERENTIAL DISTRIBUTION OF LONG AND SHORT INTERSPERSED ELEMENT SEQUENCES IN THE MOUSE GENOME - CHROMOSOME KARYOTYPING BY FLUORESCENCE INSITU HYBRIDIZATION [J].
BOYLE, AL ;
BALLARD, SG ;
WARD, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (19) :7757-7761
[5]   CONSERVATION OF POSITION AND EXCLUSIVE EXPRESSION OF MOUSE XIST FROM THE INACTIVE X-CHROMOSOME [J].
BROCKDORFF, N ;
ASHWORTH, A ;
KAY, GF ;
COOPER, P ;
SMITH, S ;
MCCABE, VM ;
NORRIS, DP ;
PENNY, GD ;
PATEL, D ;
RASTAN, S .
NATURE, 1991, 351 (6324) :329-331
[6]   A GENE FROM THE REGION OF THE HUMAN X-INACTIVATION CENTER IS EXPRESSED EXCLUSIVELY FROM THE INACTIVE X-CHROMOSOME [J].
BROWN, CJ ;
BALLABIO, A ;
RUPERT, JL ;
LAFRENIERE, RG ;
GROMPE, M ;
TONLORENZI, R ;
WILLARD, HF .
NATURE, 1991, 349 (6304) :38-44
[7]   THE HUMAN XIST GENE - ANALYSIS OF A 17 KB INACTIVE X-SPECIFIC RNA THAT CONTAINS CONSERVED REPEATS AND IS HIGHLY LOCALIZED WITHIN THE NUCLEUS [J].
BROWN, CJ ;
HENDRICH, BD ;
RUPERT, JL ;
LAFRENIERE, RG ;
XING, Y ;
LAWRENCE, J ;
WILLARD, HF .
CELL, 1992, 71 (03) :527-542
[8]   CONSERVATION THROUGHOUT MAMMALIA AND EXTENSIVE PROTEIN-ENCODING CAPACITY OF THE HIGHLY REPEATED DNA LONG INTERSPERSED SEQUENCE ONE [J].
BURTON, FH ;
LOEB, DD ;
VOLIVA, CF ;
MARTIN, SL ;
EDGELL, MH ;
HUTCHISON, CA .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 187 (02) :291-304
[9]   A first-generation X-inactivation profile of the human X chromosome [J].
Carrel, L ;
Cottle, AA ;
Goglin, KC ;
Willard, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (25) :14440-14444
[10]   XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear chromosome structure [J].
Clemson, CM ;
McNeil, JA ;
Willard, HF ;
Lawrence, JB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (03) :259-275