Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent

被引:240
作者
Bernatchez, PN
Soker, S
Sirois, MG
机构
[1] Montreal Heart Inst, Res Ctr, Montreal, PQ H1T 1C8, Canada
[2] Montreal Heart Inst, Dept Pharmacol, Montreal, PQ H1T 1C8, Canada
[3] Childrens Hosp, Dept Urol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.274.43.31047
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular endothelial growth factor (VEGF) is a potent inducer of endothelial cell (EC) proliferation and migration in vitro as well as inflammation in vivo. We showed recently that VEGF effect on vascular permeability was dependent on the synthesis of platelet-activating factor (PAF) by EC, Consequently, we sought to evaluate by antisense knockdown of gene expression the contribution of VEGF receptors (Flt-1 and Flk-1) on these events. VEGF (10(-11) to 10(-8) M) elicited a dose-dependent increase of bovine aortic EC proliferation, migration, and PAF synthesis by up to 2.05-, 1.31- and 35.9-fold above basal levels, respectively. A treatment with two modified antisense oligomers (1-5 x 10(-7) M) directed against Flk-1 mRNA blocked by 100, 91, and 85% the proliferation, migration, and PAF synthesis mediated by VEGF, respectively. A treatment with two antisense oligomers directed against Flt-1 mRNA failed to modulate these activities. The use of placenta growth factor (up to 10(-8) M), an Flt-1-specific agonist, induced only a slight increase (0.6-fold) of PAF synthesis. These data illustrate the crucial role of Flk-1 in EC stimulation by VEGF. The capacity to inhibit the protein synthesis of Flt-1 and Flk-1 by antisense oligonucleotides provides a new approach to block VEGF pathological effects in vivo.
引用
收藏
页码:31047 / 31054
页数:8
相关论文
共 48 条
[1]   DIFFERENTIAL EXPRESSION OF THE 2 VEGF RECEPTORS FLT AND KDR IN PLACENTA AND VASCULAR ENDOTHELIAL-CELLS [J].
BARLEON, B ;
HAUSER, S ;
SCHOLLMANN, C ;
WEINDEL, K ;
MARME, D ;
YAYON, A ;
WEICH, HA .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 54 (01) :56-66
[2]   VASCULAR-PERMEABILITY FACTOR (VASCULAR ENDOTHELIAL GROWTH-FACTOR) GENE IS EXPRESSED DIFFERENTIALLY IN NORMAL-TISSUES, MACROPHAGES, AND TUMORS [J].
BERSE, B ;
BROWN, LF ;
VANDEWATER, L ;
DVORAK, HF ;
SENGER, DR .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (02) :211-220
[3]  
BREIER G, 1992, DEVELOPMENT, V114, P521
[4]   EXPRESSION OF VASCULAR-PERMEABILITY FACTOR (VASCULAR ENDOTHELIAL GROWTH-FACTOR) AND ITS RECEPTORS IN BREAST-CANCER [J].
BROWN, LF ;
BERSE, B ;
JACKMAN, RW ;
TOGNAZZI, K ;
GUIDI, AJ ;
DVORAK, HF ;
SENGER, DR ;
CONNOLLY, JL ;
SCHNITT, SJ .
HUMAN PATHOLOGY, 1995, 26 (01) :86-91
[5]   THE ANTIPROLIFERATIVE ACTIVITY OF C-MYB AND C-MYC ANTISENSE OLIGONUCLEOTIDES IN SMOOTH-MUSCLE CELLS IS CAUSED BY A NONANTISENSE MECHANISM [J].
BURGESS, TL ;
FISHER, EF ;
ROSS, SL ;
BREADY, JV ;
QIAN, YX ;
BAYEWITCH, LA ;
COHEN, AM ;
HERRERA, CJ ;
HU, SSF ;
KRAMER, TB ;
LOTT, FD ;
MARTIN, FH ;
PIERCE, GF ;
SIMONET, L ;
FARRELL, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :4051-4055
[6]   The vascular endothelial growth factor receptor Flt-1 mediates biological activities - Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis [J].
Clauss, M ;
Weich, H ;
Breier, G ;
Knies, U ;
Rockl, W ;
Waltenberger, J ;
Risau, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :17629-17634
[7]   TUMOR VASCULAR-PERMEABILITY FACTOR STIMULATES ENDOTHELIAL-CELL GROWTH AND ANGIOGENESIS [J].
CONNOLLY, DT ;
HEUVELMAN, DM ;
NELSON, R ;
OLANDER, JV ;
EPPLEY, BL ;
DELFINO, JJ ;
SIEGEL, NR ;
LEIMGRUBER, RM ;
FEDER, J .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 84 (05) :1470-1478
[8]  
CROOKE RM, 1991, ANTI-CANCER DRUG DES, V6, P609
[9]   Interactions of FLT-1 and KDR with phospholipase C gamma: Identification of the phosphotyrosine binding sites [J].
Cunningham, SA ;
Arrate, MP ;
Brock, TA ;
Waxham, MN .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (03) :635-639
[10]   KDR activation is crucial for VEGF165-mediated Ca2+ mobilization in human umbilical vein endothelial cells [J].
Cunningham, SA ;
Tran, TM ;
Arrate, MP ;
Bjercke, R ;
Brock, TA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (01) :C176-C181