High-resolution cryo-scanning electron microscopy was used to examine fibronectin fibrils formed in culture by human skin fibroblasts and in a cell-free system by denaturing soluble plasma fibronectin with guanidine. These studies indicate that the conformation of fibrils formed in culture and in a cell-free system appeared to be similar and that fibronectin fibrils have at least two distinct structural conformations. Fibronectin fibrils can be very straight structures with smooth surfaces or highly nodular structures. The average diameter of the nodules in these fibrils is 12 nm. Both conformations can be seen within an individual fibril indicating that they are not different types of fibronectin fibrils but rather different conformational states. Immunolabeling studies with a monoclonal antibody, IST-2, to the heparin IT binding domain of fibronectin revealed that the epitope was buried in highly smooth fibrils, but it was readily exposed in nodular fibrils. We propose, therefore, that fibronectin fibrils are highly flexible structures and, depending on the conformation of the fibril, certain epitopes on the surface may be buried or exposed.