A phylogenomic study of DNA repair genes, proteins, and processes

被引:363
作者
Eisen, JA [1 ]
Hanawalt, PC [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
来源
MUTATION RESEARCH-DNA REPAIR | 1999年 / 435卷 / 03期
关键词
DNA repair; molecular evolution; phylogenomics; gene duplication and gene loss; orthology and paralogy; comparative genomics;
D O I
10.1016/S0921-8777(99)00050-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ability to recognize and repair abnormal DNA structures is common to all forms of life. Studies in a variety of species have identified an incredible diversity of DNA repair pathways. Documenting and characterizing the similarities and differences in repair between species has important value for understanding the origin and evolution of repair pathways as well as for improving our understanding of phenotypes affected by repair (e.g., mutation rates, lifespan, tumorigenesis, survival in extreme environments). Unfortunately, while repair processes have been studied in quite a few species. the ecological and evolutionary diversity of such studies has been limited. Complete genome sequences can provide potential sources of new information about repair in different species. Ln this paper, we present a global comparative analysis of DNA repair proteins and processes based upon the analysis of available complete genome sequences. We use a new form of analysis that combines genome sequence information and phylogenetic studies into a composite analysis we refer to as phylogenomics. We use this phylogenomic analysis to study the evolution of repair proteins and processes and to predict the repair phenotypes of those species for which we now know the complete genome sequence. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 213
页数:43
相关论文
共 191 条
[1]   Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori [J].
Alm, RA ;
Ling, LSL ;
Moir, DT ;
King, BL ;
Brown, ED ;
Doig, PC ;
Smith, DR ;
Noonan, B ;
Guild, BC ;
deJonge, BL ;
Carmel, G ;
Tummino, PJ ;
Caruso, A ;
Uria-Nickelsen, M ;
Mills, DM ;
Ives, C ;
Gibson, R ;
Merberg, D ;
Mills, SD ;
Jiang, Q ;
Taylor, DE ;
Vovis, GF ;
Trost, TJ .
NATURE, 1999, 397 (6715) :176-180
[2]   The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes [J].
AltMorbe, J ;
Stryker, JL ;
Fuqua, C ;
Li, PL ;
Farrand, SK ;
Winans, SC .
JOURNAL OF BACTERIOLOGY, 1996, 178 (14) :4248-4257
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   The genome sequence of Rickettsia prowazekii and the origin of mitochondria [J].
Andersson, SGE ;
Zomorodipour, A ;
Andersson, JO ;
Sicheritz-Pontén, T ;
Alsmark, UCM ;
Podowski, RM ;
Näslund, AK ;
Eriksson, AS ;
Winkler, HH ;
Kurland, CG .
NATURE, 1998, 396 (6707) :133-140
[5]  
[Anonymous], 1978, ALTAS PROTEIN SEQUEN
[6]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[7]   Conserved domains in DNA repair proteins and evolution of repair systems [J].
Aravind, L ;
Walker, DR ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1223-1242
[8]   Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III [J].
Aspinwall, R ;
Rothwell, DG ;
RoldanArjona, T ;
Anselmino, C ;
Ward, CJ ;
Cheadle, JP ;
Sampson, JR ;
Lindahl, T ;
Harris, PC ;
Hickson, ID .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :109-114
[9]   ESCHERICHIA-COLI MUTY GENE-PRODUCT IS REQUIRED FOR SPECIFIC A-G-]C.G MISMATCH CORRECTION [J].
AU, KG ;
CABRERA, M ;
MILLER, JH ;
MODRICH, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :9163-9166
[10]   The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination [J].
Ayora, S ;
Rojo, F ;
Ogasawara, N ;
Nakai, S ;
Alonso, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 256 (02) :301-318