Reconstruction of reflectance spectra using robust nonnegative matrix factorization

被引:54
作者
Ben Hamza, A. [1 ]
Brady, David J.
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1T7, Canada
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27707 USA
关键词
nonnegative matrix factorization; reflectance spectra; robust statistics;
D O I
10.1109/TSP.2006.879282
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, we present a robust statistics-based nonnegative matrix factorization (RNMF) approach to recover the measurements in reflectance spectroscopy. The proposed algorithm is based on the minimization of a robust cost function and yields two equations updated alternatively. Unlike other linear representations, such as principal component analysis, the RNMF technique is resistant to outliers and generates nonnegative-basis functions, which balance the logical attractiveness of measurement functions against their physical feasibility. Experimental results on a spectral library of reflectance spectra are presented to illustrate the much improved performance of the RNMF approach.
引用
收藏
页码:3637 / 3642
页数:6
相关论文
共 19 条
[1]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[2]   On the unification of line processes, outlier rejection, and robust statistics with applications in early vision [J].
Black, MJ ;
Rangarajan, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (01) :57-91
[3]  
Griffiths P. R., 2002, Handbook of Vibrational Spectroscopy
[4]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[5]  
Hamza A.B, 2001, IEEE T SIGNAL PROCES, V49, P3045
[6]  
Hoyer PO, 2004, J MACH LEARN RES, V5, P1457
[7]  
Hoyer PO, 2002, NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, P557, DOI 10.1109/NNSP.2002.1030067
[8]  
Huber P. J., 1981, WILEY SERIES PROBABI
[9]  
Jolliffe I. T., 1986, Principal Component Analysis, DOI [DOI 10.1016/0169-7439(87)80084-9, 10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13]
[10]  
Kelley C., 1995, FRONTIERS APPL MATH, V16