Making the most of microarray data

被引:43
作者
Gaasterland, T [1 ]
Bekiranov, S [1 ]
机构
[1] Rockefeller Univ, Lab Computat Genom, New York, NY 10021 USA
关键词
D O I
10.1038/73392
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The impact of microarray technology on biology will depend on computational methods of data analysis. A supervised computer-learning method using support vector machines predicts gene function from expression data—and shows promise.
引用
收藏
页码:204 / 206
页数:3
相关论文
共 7 条
[1]  
AYCHAUDHURI S, 2000, P PAC S BIOC HON HAW, P452
[2]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[3]  
BRAZMA A, 1 INT M MICR GEN EXP
[4]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[5]  
Kohonen T., 1997, Self-organizing Maps, V2nd ed.
[6]  
VanBogelen RA, 1999, ELECTROPHORESIS, V20, P2149, DOI 10.1002/(SICI)1522-2683(19990801)20:11<2149::AID-ELPS2149>3.0.CO
[7]  
2-N