Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2:: Implications for stratospheric transport

被引:84
作者
Andrews, AE [1 ]
Boering, KA
Daube, BC
Wofsy, SC
Hintsa, EJ
Weinstock, EM
Bui, TP
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Geol & Geog, Berkeley, CA 94720 USA
[5] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[6] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
D O I
10.1029/1999JD900150
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Empirical age spectra for the lower tropical stratosphere (from the tropopause to similar to 19.5 km) have been derived from in situ measurements of CO2, using information provided by the vertical propagation of the tropospheric seasonal cycle and long-term positive trend. Our method provides accurate and unambiguous mean ages for this region which are difficult to obtain by simple analysis of lag times from tracer measurements. We find that the air is 30-40% younger in northern spring than in autumn. For example, at 460 K the mean age (relative to the tropical tropopause) was 0.4 years in March and 0.6 years in September. The phase lag times and attenuation of CO2 seasonal extrema in the stratosphere are shown to depend on seasonal variations in transport rates and on the presence of harmonics in the CO2 boundary condition with frequencies higher than 2 pi/yr. Profiles of stratospheric water vapor, generated from the derived age spectra with a stratospheric boundary condition based on observed tropical tropopause temperatures, are consistent with in situ observations of H2O. Comparison of the predicted water vapor seasonal cycle with satellite observations suggests that satellite-borne instruments underestimate the amplitude near the tropical tropopause. We relate the empirical age spectra to the analytic solution for the 1-D advection-diffusion tracer continuity equation to obtain seasonally resolved estimates of the ascent rate and the vertical diffusion coefficient. The derived age spectra provide a unique observation-based diagnostic for evaluating the simulation of tracer transport in models.
引用
收藏
页码:26581 / 26595
页数:15
相关论文
共 42 条
[1]   Photochemical evolution of ozone in the lower tropical stratosphere [J].
Avallone, LM ;
Prather, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :1457-1461
[2]   INCREASED CONCENTRATION AND VERTICAL-DISTRIBUTION OF CARBON-DIOXIDE IN THE STRATOSPHERE [J].
BISCHOF, W ;
BORCHERS, R ;
FABIAN, P ;
KRUGER, BC .
NATURE, 1985, 316 (6030) :708-710
[3]   TRACER-TRACER RELATIONSHIPS AND LOWER STRATOSPHERIC DYNAMICS - CO2 AND N2O CORRELATIONS DURING SPADE [J].
BOERING, KA ;
DAUBE, BC ;
WOFSY, SC ;
LOEWENSTEIN, M ;
PODOLSKE, JR ;
KEIM, ER .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (23) :2567-2570
[4]   MEASUREMENTS OF STRATOSPHERIC CARBON-DIOXIDE AND WATER-VAPOR AT NORTHERN MIDLATITUDES - IMPLICATIONS FOR TROPOSPHERE-TO-STRATOSPHERE TRANSPORT [J].
BOERING, KA ;
HINTSA, EJ ;
WOFSY, SC ;
ANDERSON, JG ;
DAUBE, BC ;
DESSLER, AE ;
LOEWENSTEIN, M ;
MCCORMICK, MP ;
PODOLSKE, JR ;
WEINSTOCK, EM ;
YUE, GK .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (20) :2737-2740
[5]   Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide [J].
Boering, KA ;
Wofsy, SC ;
Daube, BC ;
Schneider, HR ;
Loewenstein, M ;
Podolske, JR .
SCIENCE, 1996, 274 (5291) :1340-1343
[7]   EVIDENCE FOR INTERANNUAL VARIABILITY OF THE CARBON-CYCLE FROM THE NATIONAL-OCEANIC-AND-ATMOSPHERIC-ADMINISTRATION CLIMATE-MONITORING-AND-DIAGNOSTICS-LABORATORY GLOBAL-AIR-SAMPLING-NETWORK [J].
CONWAY, TJ ;
TANS, PP ;
WATERMAN, LS ;
THONING, KW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D11) :22831-22855
[8]   AN EXAMINATION OF THE TOTAL HYDROGEN BUDGET OF THE LOWER STRATOSPHERE [J].
DESSLER, AE ;
WEINSTOCK, EM ;
HINTSA, EJ ;
ANDERSON, JG ;
WEBSTER, CR ;
MAY, RD ;
ELKINS, JW ;
DUTTON, GS .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (23) :2563-2566
[9]   A reexamination of the "stratospheric fountain" hypothesis [J].
Dessler, AE .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (22) :4165-4168
[10]   ORIGIN AND DISTRIBUTION OF THE POLYATOMIC MOLECULES IN THE ATMOSPHERE [J].
DOBSON, GMB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 236 (1205) :187-193