Locational optimization problems solved through Voronoi diagrams

被引:153
作者
Okabe, A [1 ]
Suzuki, A [1 ]
机构
[1] NANZAN UNIV,DEPT INFORMAT SYST & QUANTITAT SCI,SHOWA KU,NAGOYA,AICHI 466,JAPAN
关键词
D O I
10.1016/S0377-2217(97)80001-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper reviews a class of continuous locational optimization problems (where an optimal location or an optimal configuration of facilities is found in a continuum on a plane or a network) that can be solved through the Voronoi diagram. Eight types of continuous locational optimization problems are formulated, and these problems are solved through the ordinary Voronoi diagram, the farthest-point Voronoi diagram, the weighted Voronoi diagram, the network Voronoi diagram, the Voronoi diagram with a convex distance function, the line Voronoi diagram, and the area Voronoi diagram. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 52 条
[1]  
[Anonymous], 1972, Transportation Science, DOI DOI 10.1287/TRSC.6.4.379
[2]  
[Anonymous], P 8 CAN C COMP GEOM
[3]  
[Anonymous], 1994, COMPUTATIONAL GEOMET
[4]  
[Anonymous], 1975, P 16 ANN IEEE S FDN
[5]  
[Anonymous], 1985, P 1 ANN S COMP GEOM
[6]  
[Anonymous], 1957, THEORY LOCATION IND
[7]  
[Anonymous], LECT NOTES CONTROL I
[8]  
AONUMA H, 1990, 6TH P ACM S COMP GEO, P225
[9]   HEXAGONAL TERRITORIES [J].
BARLOW, GW .
ANIMAL BEHAVIOUR, 1974, 22 (NOV) :876-878
[10]   A MAXMIN LOCATION PROBLEM [J].
DASARATHY, B ;
WHITE, LJ .
OPERATIONS RESEARCH, 1980, 28 (06) :1385-1401